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Abstract

This thesis is consists of two parts. In first part the collinear central configuration

for five masses is discussed. In the second part, the equation of motion of 6th

particle is considered in the gravitational field of five masses. After finding the

equation of motion of 6th particle the equilibrium points and their linear stability

analysis is examined by using Mathematica. In the last part the permissible region

of motion is explored for test particle by using different values of Jacobian constant.
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Chapter 1

Introduction

Thein-bodyiproblem in mechanicsiis the problem ofidetermining theiindividual

motions ofia group of celestial objectsithat interact gravitationally towardsieach

other.iThe purpose behind resolvingithese sort ofiproblems isito know about the

motion ofithe moon, the sun, planets,ivisible stars etc. In thei17th century math-

ematicians and astronomers wereiattracted to n-body problem. Isaac Newton re-

solved twoibody-problem (2BP) through his lawsiof motions and the universalilaw

of gravity. There is noisignificant way to solve theiproblem if n ≥ 3,ibut if we have

a restrictedin-bodyiproblemiitimay provide a particular solution.iMathematicians

and astronomers have continued workingion the n-body problem duringithe last

four centuries. First, inithe 17th century, Kepler definedithe elliptical trajectories

of planets aroundithe sun in his planetaryilaws of motion between 1609iand 1619

“Philosophiae Naturalis Principia Mathematica” [1].

Oneiofithe most important worksoin the history of science,oin which Newton de-

rived andi formulatedoKeplersolaw. As a special case,othe law for two parti-

clesowhen they are interacting with eachoothers by gravitational force is:

F = G
m1m2

r3
r, (1.1)

where the two masses m1 and m2iare apart from each othersiby r and G, isithe

universal gravitational constant. After theijustification of Keplers laws, Newton
1
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turned his attention toicomparatively moreicomplex systems.iAlexis Clairaut suc-

ceeded inipresenting an approximation for thei3BP. After some small adjustment,

hisiwork accounted for the perigeeiof the moon, which wasithe aim of Newton. He

wonithe St. Petersburg Academy prizeiin 1752. When Halleys comet passediby

earth in 1759, theivalue of his approximations wasiamply to demonstrate its mo-

tion. Heihimself take off the marginiof error which he predicted inihis equations,

within a month. LeonhardiEuler also work on thei3BP at the same time.iThe ex-

tremely influential work of HenriiPoincare on 3BP has endithe classical period of

work.iKing Oscar II of Sweden, inithe late 19th century setupian award for solv-

ing thein-body problem on the recommendationiof Karl Weierstrass, Gsta Mittag-

Leffler,iand Charles Hermiteiconverges uniformly [2]. Many eminent mathemati-

cians andiastronomers like Carl GustaviJacob Jacobi, Lagrange andiEuler working

on itiin the 19th century.iUntil 1991, the general solution to the problem was re-

mainediunsolved, when a Professoriin the University of Arizona,iQiudong Wang

published “Theiglobal solution of n-bodyiProblem” [3]. Gomatan et al. (1999),

Kozak and Oniszk (1998) and Majorana (1981) derived equilibrium solutions and

analyzed their stability for different types of four-body problems. Majorana (1981)

studied the linear stability of the equilibrium points in the restricted four-body

problem.More recent works on the collinear problem include those of Douskos

(2010), and Ouyang and Xie (2005). Douskos discussed the existence and stability

of the collinear equilibrium points of a generalized Hill problem and showed the

existence of two equilibrium points for a positive oblateness co-efficient. Ouyang

and Xie found regions on the configuration space where it is possible to choose

masses for collinear configuration of four bodies which will make it central.

1.1 CentraliConfiguration

AoCentral Configuration (CC)iis aispecialiarrangement of point massesiinteracting

by Newton’s law ofigravitation withitheifollowing propertyi“The gravitational

acceleration vector producedion each mass by alliothers should point

toward theicenter of mass and proportionalito the distance to theicenter
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of mass”.

CC playian important role in theistudy of the Newtonian n-bodyiproblem. For an

arbitrary given set of masses the number of classes of planar non collinear central

configurations of the n-body problem has been only solved for n = 3. In this case

they are the three collinear and the two equilateral triangle central configurations,

due to Euler [4] and Lagrange. Recently, Hampton and Moeckel [5] proved that for

any choice of four masses there exist a finite number of classes of central configu-

rations. For five or more masses this result is unproved, but recently an important

contribution to the case of five masses has been made by Albouy and Kaloshin [6].

Under the assumption that every central configuration of the four-body problem

has an axis of symmetry when the four masses are equal, the central configura-

tions were characterized studying the intersection points of two planar curves in

[7]. Later on in [8, 9] Albouy provided a complete proof for the classes of central

configurations of the four-body problem with equal masses. Bernat, Llibre and

Perez Chavela [10] complete the characterization of the kite planar noncollinear

classes of central configurations with three equal masses, started by Leandro in

[11].

1.1.1 Restrictedin-Body Problem

Restricted n body problem is defined that n − 1 masses (mi = 3, 4, 5, ..., n −

1) and one infinitesimal (test particle) mass m, which has negligible mass as

compared with mi, i.e., m << mi. From the above defination we can eas-

ily conclude that the mass m does not have any gravitaional influence on all

mi, due to the condition m << mi. The first such problem restricted three

body problem (R3TB) was described by Henri Pioncare [2]. iEuler’s solvedithe

three-body problemifor the motioniof a particleithat is influenced byithe gravita-

tional field ofitwo other point massesifixed in space. Thisiproblem is explicitly

solvableiand provides an approximateisolution for moving particlesiin the grav-

itationalifields. A systematic analysisiof periodic orbits wasidone in the prob-

lemiof the two-dimensional,ielliptic,irestricted three-body [12]. Theiposition and
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stability ofithe five points ofiequilibrium in the planar,icircular restricted three-

body problemiis investigated when aivariety of studies ofidrag forces act onithe

third body [13].

In the restrictedithree-body problem, the presenceiof transversal ejection-collision

orbitsidiscussed [14]. Conley etial. discussed new longiperiodic solutions in plane,iof

the restricted three-bodyiproblem [15]. Lagrange pointsiand their stability inia

restricted four-body problemiwhere three bodies areifinite and fourth

isiinfinitesimal, do not affectithe movement of theithree bodies moving inicircles

around their centeriofimass fixed atithe origin explained ini[16]. Sim-mons

andiBakker gave analysis (linearistability) of a rhomboidali4BP and show

thaticollisions (isolated binary) canibe regularized at origini[17]. Prokopenya dis-

cussed theistability of the equilibriumisolutions in the ellipticirestricted many-body

problem [18].iPlanar central configurations ofithe Four-Body Problem with three

equal masses discussediin [10]. Santos discussedieach equilibrium solution mustibe

defined by theiprimaries along a diagonal [19].

1.2 ThesisoContribution

We are setting airestricted symmetric collinear sixobody problemithat includes

symmetricaliarrangementoof two pairsoof imasses ando one massiis at origin. The

massesoare m1,im2,m3,m4,im5 and m6.iConsider theses massesim1 = m2 = im3 =

m,im4 = m5 = iM , and small massi m6 movingi so that their configurationiis

always inia straight line. Hereiwe study the positionsiof equilibrium points ofim6

in the gravitationalifield of 5 bigimasses and we willicheck their stability.

1.3 DissertationiOutlines

We further divided thisidissertation into 4ichapters.
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1. Chapter 2:

This chapteriincludes some important definitionsiconcerning the celestial me-

chanics,iNewton’s laws of motioniand the planetary motionilaws of Kepler,

theitwo body problem (2BP)iand solution of two bodyiproblem.

2. Chapter 3:

In this chapter characterizationiof collinear configuration is discussed.

3. Chapter 4:

Inithis chapter theidynamics of 6th body,iequilibrium solutions and analy-

sisithe stability of equilibriumipoints are briefly explainedi.

4. Chapter 5:

This chapter summarizes the whole study and includes the conclusion arising

from entire discussion.

Bibliography containsia list of theireferences used in theidissertation.



Chapter 2

Some Preliminaries

This chapter contains fundamental definitions, fundamental concepts, universal

principles and laws that will make our research work more comprehensible.

Definition 2.1.1. (Motion)

“Motion is the phenomenon in which an object changes its position over time.

Motion is mathematically described in terms of displacement, distance, velocity,

acceleration, speed, and time.” [20]

Definition 2.1.2. (Mechanics)

“Mechanics is the science that studied the motion of objects and can be divided

into the following:

1. Kinematics, describes how objects move in terms of space and time.

2. Dynamics, described the cause of the object’s motion.

3. Statics, deals with the conditions under which an object subjected to various

forces is in equilibrium.” [21]

Definition 2.1.3. (Vectors)

“A vector quantity may be geometrically represented by a straight line, having

a length proportional to the magnitude of the vector quantity and drawn in the
6
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same direction and sense as that of the given vector quantity.” [22]

Definition 2.1.4. (Scalar)

“Many quantities in physics can be completely specified by giving their magnitude

alone”. [22]

Definition 2.1.5. (Momentum)

“The linear momentum (or quantity of motion as was called by Newton) of a

particle of mass ρ is a vector quantity defined as:

ρ = mv, (2.1)

where v is the velocity of the particle. A fast moving car has more momentum

than a slow moving car of same mass.” [23]

ρi = ρf .

In other words, this equation says that, for a closed, isolated system, ( total linear

momentum at some initial time ti) = (total linear momentum at some later time

tf ).” [23]

F = ma =
dv

dt
=

d

dt
(mv) =

dρ

dt
.

ρ =
n∑
1

ρi.

Definition 2.1.6. (Conservation of Linear Momentum )

“If no net external force acts on a system of particles, the total linear momentum

ρ of the system cannot change. This result is called the law of conservation of

linear momentum. It can also be written as

Definition 2.1.7. (Newton’s Second Law in Term of Momentum)

“Newton’s second law can be expressed in terms of momentum for a particle like

object of constant mass as
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The total linear momentum ρ of a system of particles is defined as the vector sum

of the individual linear momentum.” [23]

L = p× ρ,

where p is a position vector of a particle relative to an origin O that is in an

inertial frame.” [23]

Definition 2.1.9. (Conservation of Angular Momentum )

“Law of conservation of angular momentum, can also be written as or net angular

momentum at some Initial time ti) = (net angular momentum at some later time

tf .) If the net external torque acting on a system is zero, the angular momentum

r of the system remains constant, no matter what changes take place within the

system.” [23]

Definition 2.1.10. (Torque)

“A quantity called torque τ as the product of the two factors and write it as

τ = r× F.

The magnitude of τ is τ=rF sin θ, where r is the perpendicular distance between

the rotation axis at 0 and an extended line running through the vector F, and θ

is the angle between the position and force vectors.” [23]

Definitiono2.1.8.o(AngularoMomentum)

“Angular momentum L of a particle of mass m and linear momentum L is a vector

quantity defined as:

Definition 2.1.11. (Central Force Field)

“A force is said to be central under two conditions. First, the direction of the

force must always be towards or away from fixed point. The point is known as the

center force. Second, the magnitude of the force should only proportional to the

distance r between the particle and center of the force. The central force may be
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written as

F = f(r)r1, (2.2)

where r1 is a unit vector in the direction of r. The most widely known are the

gravitational force and Coulomb force.” [21]

Definition 2.1.12. (Degree of Freedom)

“Consider the motion of free particle. To describe this motion we use three inde-

pendent coordinates such as the Cartesian coordinates x,y,z. The particle is free

to execute motion along any one axis independently with change in one coordi-

nate only. The above statement is equivalent to saying that the particle has three

degree of freedom.” [22]

Definition 2.1.13. (Center of Mass of System of Particle )

“Center of mass c of system of particle is the point that moves as through all of

the system mass were concentrated there and all external forces were applied.For

example, the center of mass of a uniform disc shape would be at its center. Some-

times the center of mass doesn’t fall anywhere on the object. The center of mass

of a ring for example is located at its center”. [23]

(m1 +m2 + ...+mn)r̂ = m1r1 +m2r2 + ...+mnrn,

c =
(m1 +m2 + ...+mn)r̂

M
,

where

M =
∑n
i=1

mi.

Definition 2.1.14. (Center of Gravity)

“The gravitational force on an extended body is the vector sum of the gravita-

tional forces acting on the individual elements (the atoms) of the body. Instead of

considering all those individual elements, we can say that the gravitational force

Fg on a body effectively acts at a single point, called the center of gravity (cog)
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of the body. An example of center of gravity is the middle of a seesaw.” [23]

Gc =
W1d1 +W2d2 +W3d3 + ...+Wndn

W

Definition 2.1.15. ( Principle of Superposition )

“This is a general principle that says a net effect is the sum of the individual

effects.” [23]

Definition 2.1.16. ( Equilibrium ) 

“The two requirements for equilibrium

are:

1. The linear momentum ρ of its center of mass is constant.

2. Its angular momentum L about its center of mass, or about any other point,

is also constant.

We say that such objects are in equilibrium.” [23]

To find theizeros (ξ, η) oriequilibrium points / Lagrangeipoint, we need toisolve th

equations numerically oridrawing contour plot usingiMathematica. The

classification ofiequilibrium points for restrictedicollinear six body problemiis dis-

cussed.

Definitiono2.1.17.o(InertialoFrame of Reference)

“A frame of reference that remains at rest or moves with constant velocity with

respect to other frames of reference is called inertial frame of reference. Actually,

an unaccelerated frame of reference is an inertial frame of reference. In this frame

of reference a body does not acted upon by external forces. Newton’s laws of

motion are valid in all inertial frames of reference. All inertial frames of reference

are equivalent.” [23]
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motion are valid in all inertial frames of reference. All inertial frames of reference

are equivalent.” [23]

“The equilibrium solutions for the three-body problem are named after Joseph-

Louis Lagrange, an 18th-century mathematician who wrote about them in 1772.

A Lagrange point is a location in space where the combined gravitational forces

of two large bodies, such as Earth and the sun or Earth and the moon, equal the

gravitational force felt by a much smaller third body. Of the five Lagrange points,

Figure 2.1: Lagrane points

three areounstable and two are stable. The unstable Lagrange pointso- labeled

L1, L2 and L3 - lie along the line connecting the two large masses. The stable

Lagrangeopoints - labeled L4 and L5 - formothe apex of two equilateralotriangles

Definition 2.1.18.o(Point-Like oParticle)

“A point-like particle is an idealization of particles mostly used in different fields

of physics. Its defining features is the lacks of spatial extension: being zero-

dimensional, it does not take up space. A point-like particle is an appropriate

representation of an object whose structure, size and shape is irrelevant in a given

context. e.g., from far away, a finite-size mass (object) will look like a point-like

particle.” [24]

Definition 2.1.19. (Lagrange Points)o
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that have the large masses at their vertices. L4 leads theoorbit of earth and L5

follows. The L1 point of the Earth-Sun system affords anouninterrupted view of

theosun and is currently home to the Solar and Heliospheric Observatory Satel-

lite SOHO. The L2 point of theoEarth-Sun system was theohome to the WMAP

spacecraft, current home of Planck, and future homeoof the James Webb Space

Telescope.oL2 is idealofor astronomy because a spacecraft is close enough to read-

ilyocommunicate withoEarth, can keep Sun, Earth and Moon behind the space-

craft for solaropower and (with appropriate shielding) provides a clearoview of

deep spaceofor our telescopes. The L1 and L2opoints are unstable on a time

scale of approximately 23 days, which requires satellitesoorbiting theseopositions

to undergo regular course and attitude corrections.”

2.1 Kepler’soThree Laws ofoPlanetaryoMotion

“Kepler’s three laws of planetary motion can be described as follows:

1. The orbit of a planet is an ellipse with the Sun at one of the two foci.

2. A line segment joining a planet and the Sun sweeps out equal areas during

equal intervals of time.

3. The square of a planet’s orbital period is proportional to the cube of the

length of the semi-major axis of its orbit. Mathematically, Kepler’s third

law can be written as:

T 2 =

(
4π2

GMs

)
r3,

where T is the time period, r is the semi major axis, Ms is the mass of sun

and G is the universal gravitational constant.” [25]

2.2 IsaacoNewton’s Laws ofoMotion

“The following three laws of motion given by Newton are considered the axioms

of mechanics:
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1. First law of motion

Newton’s first law of motion essentially states that a point object subject to

zero net external force moves in a straight line with a constant speed (i.e., it

does not accelerate). However, this is only true in special frames of reference

called inertial frames. Indeed, we can think of Newton’s first law as the

definition of an inertial frame.”

2. Second law of motion

“Newton’s second law of motion essentially states that if a point object is

subject to an external force F, then its equation of motion is given by

F =
d

dt
(mv) =

dρ

dt
.

If m is independent of time this becomes

F = m
dv

dt
= ma,

where the momentum ρ is the product of the object’s inertial mass m and

its velocity v.”

3. Third law of motion

“Consider a system of N mutually interacting point objects. Let the ith

object, whose mass is mi, be located at position vector pi. Suppose that

this object exerts a force fji on the jth object. Likewise, suppose that the

jth object exerts a force fij on the ith object. Newton’s third law of motion

essentially states that these two forces are equal and opposite, irrespective

of their nature. In other words, fij = −fji.

For example, a book resting on a table applies a downward force equal to its

weight on the table.” [25]

2.2.1 Newton’s Universal Law of Gravitation

“Newton’s law of gravitation: Every particle attracts any other particle with a

gravitational force of magnitude
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F = G
m1m2

p3
p,

Here m1 and m2 are the masses of the particles, p is the distance between them,

and G is the gravitational constant, with a value that is now known to be G =

6.67 × 10−11m3kg−1s−2 and F is the gravitational force acting on particle 1

(m1) due to particle 2 (m2). The force is directed toward particle 2 and is said

to be an attractive force because particle 1 is attracted toward particle.” [25]

2.3 TheoTwo-BodyoProblem

“A two-body problem is a dynamical system that consists of two freely moving

point objects exerting forces on one another. Assume the first object has a mass of

m0 and has theposition vector p1. Similarly, the second object has a mass of m1

and has theposition vector p2. Let the force applied by first objecton the second is

(F01) and, theforce exerted by second object on first is (F10). The corresponding

equations are:

m1

d 2r1

dt 2
= −F10 (2.3)

m2

d 2r2

dt 2
= F01” [25] (2.4)

2.3.1 The Two Body Problem Solution

“The governing law for the two-body is Newton’s universal gravitational law:

F = G
m0m1

p3
p, (2.5)

for two masses m0 and m1 separated by a distance of p, and G is the universal

gravitational constant. The aim here is to determine the path of the particles for

any time t, if the initial positions and velocities are known.

In Figure 2.1, theoforce of attractionoF0 is directedoalong p towardsom0, while

theoforce F1 on m1 isoin oppositeodirection.
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According to Newton’s 3rd law of motion,

F10 = −F01. (2.6)

From Figure 2.1,

F10 = G
m0m1

p3
p. (2.7)

UsingiNewton’s 2ndilawiofimotion and by Equations (2.6) and (2.7), the equa-

tion of motion of the particles under the influence of their mutual gravitational

attraction is

m0p
′′

1 = m0

d2p1

dt2
= G

m0m1

p3
p, (2.8)

Figure 2.2: Center of mass

m1p
′′

2 = m1

d2p2

dt2
= −G

m0m1

p3
p, (2.9)

where O is the reference point and p1 and p2 are the position vectors of m0 and

m1 respectively. Adding Equations (2.8) and (2.9), we get

m0p
′′

1 +m1p
′′

2 = 0, (2.10)

Integrating the above equation:

m0p
′

1 +m1p
′

2 = k1, (2.11)
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that the total linear momentum of the system i.e., m0vm0 +m1vm1 = k1.

Again integrate Equation (2.11):

m0p1 +m1p2 = k1t+ k2, (2.12)

where k1 and k2 areoconstantovectors.

Using the concept of centeroof massofrom 2BP, P is defined as:

P =
m0p1 +m1p2

(m0 +m1)
, (2.13)

P =
m0p1 +m1p2

mt

, (2.14)

where mt = m0 +m1.

When we compare the derivative of Equation (2.14) with Equation (2.11), we

obtain

mtP
′
= k1

⇒ P
′
=

k1

m1t

= constant.

P
′
= vc is constant, in which the velocity of the center of mass is vc.

Subtracting Equations (2.8) and (2.9), we get:

p
′′

1 − p
′′

2 =
Gm1

p3
p +

Gm0

p3
p, (2.15)

p
′′

1 − p
′′

2 = G
p

p3
(m0 +m1),

⇒ p
′′

= α(
p

p3
),

⇒ p
′′

+ α
p

p3
= 0, (2.16)

where the reduced mass is defined as α = G(m0 +m1) and p1− p2 = −p, see

Figure 2.1.

With p as the cross product of Equation (2.16), we get:

p× αp
′′

+
α2

p3
p× p = 0
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⇒ p× p
′′

= 0, (2.17)

Integrating above equation:

p× p
′
= L, (2.18)

where L is a constant vector (Angular momentum), (2.18) may be expressed as,

⇒ p× αp
′′

= 0,

⇒ p× F = 0,

where F = αp
′′

= αa (α) is defined as “reduced mass” or “constant”.

According to definition of the angular momentum and torque , we obtain:

τ ∗ =
dK

dt
= p× F. (2.19)

The result of comparing Equations (2.21) and (2.22) is:

τ ∗ =
dK

dt
,

p× F = 0,

dK

dt
= 0,

⇒ K = constant,

This demonstrates that the system’s angular momentum is constant.” [25]

2.3.2 The Transverse Components and Radial Components

of Velocity and Acceleration:

If p and θ are the polar coordinatesoin this plane shown in Figure 2.2. p
′

and

pθ
′

are the velocity components along and perpendicular to the radius vector
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connecting m0 and m1, then,

p
′
=
dp

dt
= p

′
î+ pθ

′
ĵ, (2.20)

where îoand ĵ are unitovectors parallel andoperpendicular to the radius vector.

As a result ofoEquations (2.19) and (2.24),

p× (p
′
î+ pθ

′
ĵ) = p2θ

′
k̂ = Kk̂, (2.21)

where k̂ is a unit vector perpendicular to the orbit’s plane. We are able to write

p2θ
′
= K, (2.22)

thus the constant K isoseen toobe twice theorate of descriptionoof area by the

radius vector, which is the mathematicaloexpression of Kepler’s second law.

Figure 2.3: The transverse components and radial components of velocity and
acceleration

If we take the scalar product of Equation (2.16) with p
′
, we obtain :

p
′
.
d2p

dt2
+ α

p
′
.p

p3
= 0,
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by integrate the above equation, we get

1

2
p

′
.p

′ −
m0u

p
= C, (2.23)

1

2
v2 −

α

p
= C, (2.24)

where C is a constant.

Components of the acceleration vector are paralleland perpendicular to the radius

vector, as determined by celestial mechanics (see Figure 2.2):

b = (p
′′ − pθ

′2
)̂i+

1

p

d

dt
(p2θ

′
)ĵ,

using this Equation in (2.11), we get

p
′′ − pθ

′2
= −

α

p2
, (2.25)

1

p

d

dt
(p2θ

′
) = 0. (2.26)

Integrating Equation (2.30):

p2θ
′
= K, (2.27)

which is the angular momentum integral, using the standard replacement of

w =
1

p
, (2.28)

removing the time between (2.20) and (2.22) Equations:

⇒
d2w

dθ2
+ w =

α

K2
. (2.29)

⇒ w =
α

K2
+B cos(θ − θ0). (2.30)

Substitute w = 1
p

in above equation:

1

p
=

α

K2
+B cos(θ − θ0),
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⇒ p =
K2

α

1 + K2B
α

cos(θ − θ0)
,

isothe polar formoof the equationoof the conic which mayobe written as:

p =
q

1 + e∗ cos(θ − θ0)
,

where

q =
K2

α
,

e∗ =
BK2

α
.

Eccentricityoe∗ classifiesothe trajectory of oneocelestial body aroundoanother.

1. Elliptical orbit:

An elliptical orbit is one in which 0 < e∗ < 1.

2. Parabolic orbit:

Parabolic orbit occurs when e∗ = 1.

3. Hyperbolic orbit:

In the case of e∗ > 1, the orbit is a hyperbolic orbital trajectory.

As a result, the solution to theotwo-body problemo(2BP) is aoconic section witho

Kepler’s first law as a particular case.



Chapter 3

Restricted Symmetric Collinear

Central Configuration for Six

Body

3.1 Introduction

A collinearifive bodyiproblem thatiincludes symmetricaliarrangement of two pairs

of equal masses alongieach side of centeriof mass and oneimass at the originiis

investigated by usingiNewton’s laws of motioniand universal law of gravity.iThe

masses are im1,m2,m3,m4iand m5. The central configurationiis analyzed with

the assumptionim1 = m2 = im3 = m andim4 = m5 = iM . The larger

massesiare placed in theimiddle and smaller massesiare placed at theicorner of

each side.

3.2 CollineariConfiguration Characterization

For n-bodyiproblem the classical equationiof motion is

n∑
k=1 ki6=j

mk

pk − pj

|pk − pj|3
= p

′′

j i. (3.1)

21
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Aocentral configuration of theo n bodies where the accelerationovector of each

bodyois proportional to itsoposition vector, and the constantoof proportionality is

the sameofor n bodies.oTherefore, a central configurationofulfills theoequation:

n∑
k=1 ki6=j

mki
(pk − pj)

|pk − pj|3
= −ω2 ( pj − c ), (3.2)

here ω2iis an angularivelocity which is alsoinonzero as well asiconstant, where c

is definedias

c =

∑n
j=1mjpj∑n
j=1mj

, i (3.3)

wich is the centeriof mass for nibodies.

Substitute n = 5iin equation number (3.2),ithe CC’s equations forithe general

five-body problemi(5BP) are:

m2

(p2 − p1)

|p2 − p1|3
+m3

(p3 − p1)

|p3 − p1|3
+m4

(p4 − p1)

|p4 − p1|3
m5

(p5 − p1)

|p5 − p1|3
= −ω2(p1−c),

(3.4)

m1

(p1 − p2)

|p1 − p2|3
+m3

(p3 − p2)

|p3 − p2|3
+m4

(p4 − p2)

|p4 − p2|3
+m5

(p5 − p2)

|p5 − p2|3
= −ω2(p2−c),

(3.5)

m1

(p1 − p3)

|p1 − p3|3
+m2

(p2 − p3)

|p2 − p3|3
+m4

(p4 − p3)

|p4 − p3|3
+m5

(p5 − p3)

|p5 − p3|3
= −ω2(p3−c),

(3.6)

m1

(p1 − p4)

|p1 − p4|3
+m2

(p2 − p4)

|p2 − p4|3
+m3

(p3 − p4)

|p3 − p4|3
+m5

(p5 − p4)

|p5 − p4|3
= −ω2(p4−c),

(3.7)

m1

(p1 − p5)

|p1 − p5|3
+m2

(p2 − p5)

|p2 − p5|3
+m3

(p3 − p5)

|p3 − p5|3
+m5

(p4 − p5)

|p4 − p5|3
= −ω2(p5−c).

(3.8)

Now consider the five massesim1,m2,m3,m4, m5 with their positions at p1 =

(0, 0) , ip2 = (−b, 0) , ip3 = (b, 0) , ip4 = (−a, 0) , ip5 = (a, 0) respectively.

Assuming the massesias:

m1 = m2 = im3 = m and m4 = im5 = M, (3.9)
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and theidistances between the massesidue to the symmetryiof the geometryi(see

Figure 3.1) satisfy theifollowing relations:

p2 = −p3, p4 = −p5. (3.10)

Figure 3.1: Symmetric collinear central configuration for five body

The center ofimass for five-bodies canibe written as,

c =
m1p1 +m2p2 +m3p3 +m4p4 +m5p5

m1 +m2 +m3 +m4 +m5

, (3.11)

after usingithe values of ip1, p2, p3, p4,ip5 and m1 = im2 = m3 = m

andim4 = m5 = iM , the equation (3.11)ibecomes:

c = (0, 0) . (3.12)

Now using theivalues of Equations (3.9),i(3.11) and (3.12) iniEquations (3.4)-(3.8)

and usingiω2 = 1(without loss of generality),ithen the equation (3.4)iis identically

satisfied andiremaining four Equations (3.5)-(3.8)ibecome:
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M

(a+ b)2
+

5m

4b2
+

M

(a− b)2
− b = 0, (3.13)

M

(a− b)2
−

5m

4b2
+

M

(a+ b)2
+ b = 0, (3.14)

m

(a+ b)2
+

m

(a− b)2
o+ o

m

a2
+

M

4a2
− ao = 0, (3.15)

m

(a− b)2
+

m

(a+ b)2
−

m

a2
−

M

4a2
+ a = 0, (3.16)

Equation (3.13)iand (3.15) are similarito Equation (3.14) andi(3.16) respectively.

Therefore weihave the followingi two equations:

M

(a− b)2
−

5m

4b2
+

M

(a+ b)2
+ b = 0, (3.17)

mo

(a+ b)2
+

m

(a− b)2
+

m

a2
+

M

4a2
− a = 0. (3.18)

Solvingithe above equations forim and M , weiget

m =
h1(a, b)

h2(a, b)
, (3.19)

where

h1(a, b) = −
(
b

4a2
+

a

(a− b)2
+

a

(a+ b)2

)
, (3.20)

h2(a, b) = −
5

16a2b2
−
(

1

(a− b)2
+

1

(a+ b)2

)(
1

a2
+

1

(a− b)2
+

1

(a+ b)2

)
,

(3.21)

and

M =
h3(a, b)

h4(a, b)
, (3.22)

where

h3(a, b) = b+4a2+4a3

(
1

(a− b)2
+

1

(a+ b)2

)(
1

a2
+

1

(a− b)2
+

1

(a+ b)2

)
,

(3.23)
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h4(a, b) = −
5

16a2b2
−
(

1

(a− b)2
+

1

(a+ b)2

)(
1

a2
+

1

(a− b)2
+

1

(a+ b)2

)
.

(3.24)

Our next objective isito verify the positivityiof small mass miand the large M ,

whichiwere described iniequationo(3.19) ando(3.22) i.e.,oto findothe value of a

andothe value of b forowhich the m and M masses iare positive. Equations

(3.19)iand (3.22) are non-linear algebraic equations. It is very difficult to solve

these equations for miand M . Takingi b = 0.5 and solving i (3.19) and (3.22)

fori a, we get i the following two casesi for a, where mi andoM areopositive.i.e.,

1. 0.20 ≤ a ≤ 0.250i

2. a ≥ 0.87



Chapter 4

Dynamics of 6th Particle

4.1 Introduction

Theidynamics of 6th particleim6 moving in the planei according to thei gravita-

tional fieldiformed by the attractioniof 5 masses (m1, im2,m3,m4,m5)imoving

always in a straightiline is discussed. The motioniof m6 will notieffect the gravita-

tional fieldiofm1,m2,m3, im4 andm5ibecausem6 << m1,m2, im3,m4,m5.

Thisiproblem is called restrictedicollinear six-body problem (RC6BP). Equilibrium

points, their stabilities and regions of permissible motions of m6 according to the

Jacobian constant is also investigated. Equationiof motion that describeithe planer

motion ofirestricted 6th particle, massim6 written from equationi(3.1) reads in in-

ertialiframe of reference, as:

p
′′

6 = im5

p5 − p6

|p5 − p6|3
+m4

p4 − p6

|p4 − p6|3
+m3

p3 − p6

|p3 − p6|3

+m2

p2 − p6

|p2 − p6|3
+m1

p1 − p6

|p1 − p6|3
. (4.1)

4.2 Equation of Motion of m6i

Nowiour next goal isito write the aboveiequation in rotating frame.iConsider a

coordinate systemithat is rotating aboutithe center of mass withiuniform angular

26
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speediω. Leti(ξ, η) be the coordinatesiof m6 inithis new rotating frame (non-

inertialiframe). The position vectoriof m6 in the rotatingiframe is

p6 = iξ(t) e∗1 + η(t) e∗2, (4.2)

where

e∗1 = eiwt, e∗2 = ieiwt.

Takingi1st derivative andi 2nd derivatives of equationi(4.2) and chooseiω2 = i1 we

getithe following expression forivelocity and acceleration for m6 in rotatingiframe.

p
′

6 = i(ξ
′ − η) eit + i (ξ + η

′
) eit

p
′′

6 = (ξ
′′ − 2η

′ − ξ) eit + i (η
′′

+ 2ξ
′ − η) eit

 . (4.3)

UsingiEquation (4.3) in Equation (4.1), theiplaner equations of motion ofim6 in

rotating frame in componentiform are

ξ
′′ − 2η

′ − ξ = −
[
m

(
ξ

p3
61

+
ξ + b

p3
62

+
ξ − b
p3
63

)
+M

(
ξ + a

p3
64

+
ξ − a
p3
65

)]
,

(4.4)

oooo

η
′′

+ 2ξ
′′ − η = −

[
m

(
η

p3
61

+
η

p3
62

+
η

p3
63

)
+M

(
η

p3
64

+
η

p3
65

)]
. (4.5)

Theimutual distances areidescribed as,

p61 =
√
ξ2i+ η2,

p62 =
√

(ξi+ ib)2 + iη2,

p63 =
√

(ξi− ib)2i+ iη2,

p64 =
√

(ξi+ ia)2i+ iη2,

p65 =
√

(ξi− ia)2i+ iη2.


(4.6)

Multiplying Equation (4.4) byiξ
′
, and Equation (4.5) byiη

′
, we get
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ξ
′′
ξ

′ − 2η
′
ξ

′ − ξξ′
=−mξ′

(
ξ

p3
61

+
ξ + b

p3
62

+
ξ − b
p3
63

)
−Mξ

′
(
ξ + a

p3
64

+
ξ − a
p3
65

)
, (4.7)

η
′′
η

′
+ 2ξ

′
η

′ − ηη′
=−mη′

(
η

p3
61

+
η

p3
62

+
η

p3
63

)
−Mη

′
(
η

p3
64

+
η

p3
65

)
. (4.8)

AddingiEquations (4.7) and (4.8), we get weiget:

ξ
′′
ξ

′
+ η

′′
η

′ − (ξξ
′
+ ηη

′
) =−

m

p3
61

(
ξξ

′
+ ηη

′
)

−
m

p3
62

(
ξξ

′
+ bξ

′
+ ηη

′
)

−
m

p3
63

(
ξξ

′ − bξ′
+ ηη

′
)

−
M

p3
64

(
ξξ

′
+ aξ

′
+ ηη

′
)

−
M

p3
65

(
ξξ

′ − aξ′
+ ηη

′
)
. (4.9)

Noteithat

ξ
′′
ξ

′
+ η

′′
η

′
=

1

2

d

dt

(
ξ

′2
+ η

′2
)

=
1

2

dv2

dt
, (4.10)

whereiv is theispeed of the infinitesimalimass relative to theirotating frame. Sim-

ilarly

ξξ
′
+ ηη

′
=

1

2

d

dt
(ξ2 + η2). (4.11)

FromiEquationi(4.6), we obtaion, the following

p2
61 = ξ2i+ iη2, (4.12)

d

dt
p61 =

1

p61

(ξξ
′
i+ iηη

′
). (4.13)

As we know that
d

dt

(
1

p61

)
= −

1

p2
61

d

dt
p61. (4.14)
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Using Equationi(4.13) in Equation (4.14)iwe get theifollowing equations:

1

p′
61

= −
1

p3
61

(ξξ
′
i+ iηη

′
), (4.15)

similarly
1

p′
62

= −
1

p3
62

(ξξ
′
i+ bξ

′
+ ηη

′
), (4.16)

1

p′
63

= −
1

p3
63

(ξξ
′
i− bξ′

+ ηη
′
), (4.17)

1

p′
64

= −
1

p3
64

(ξξ
′
i+ aξ

′
+ ηη

′
), (4.18)

1

p′
65

= −
1

p3
65

(ξξ
′
i− aξ′

+ ηη
′
). (4.19)

Using equations fromi(4.10)ito (4.19) in equationi(4.9), we get

d

dt

(
1

2
v2 −

1

2
(ξ2 + η2)−m

(
1

p61

)
−m

(
1

p62

)
−m

(
1

p63

)
−M

(
1

p64

)
−M

(
1

p65

))
= 0. (4.20)

Integrating equationi(4.20)i with respect to t, we get:

1

2
v2 −

1

2
(ξ2 + η2)−m

(
1

p61

+
1

p62

+
1

p63

)
−M

(
1

p64

+
1

p65

)
= C. (4.21)

Theiconstant C (named afterithe German mathematician Carl Jacobi who discov-

erediit in 1836) is known asithe Jacobi constant. In the collinear restricted six

body problem, C is a constant of motion of m6, here

• − 1
p61

,− 1
p62

i,i− 1
p63

,ii− 1
p64

,ii− 1
p65

iareithe gravitational P.Eiof the masses

m1, m2, m3, m4, m5 along horizontal axis.

• 1
2
v2 isithe K.E per unit mass relative to rotating frame.

• −1
2(ξ2 + η2)iis the P.Eiof the centrifugal force obtainediby the rotation of

the reference frame.
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We rewrite the equation (4.21),

v2 = (ξ2 + η2) + 2M

(
1

p64

+
1

p65

)
+ 2m

(
1

p61

+
1

p62

+
1

p63

)
+ 2C (4.22)

as v2 cannot be negative, we can write itrue,

(ξ2 + η2) + 2M

(
1

p64

+
1

p65

)
+ 2m

(
1

p61

+
1

p62

+
1

p63

)
+ 2C ≥ 0, (4.23)

wherei

U(ξ, η) =
(ξ2 + η2)

2
+M

(
1

p64

+
1

p65

)
+m

(
1

p61

+
1

p62

+
1

p63

)
. (4.24)

4.3 Equilibrium Solutions

The equations (4.4) and (4.5) do not have an analytical solution of a closed form,

weican use these equations toidetermine the location of theiequilibrium points.

Equilibrium points are the placesiin space where the infinitesimalimass m6 would

have zero velocityiand acceleration, i.e., whereim6 appears at restipermanently

relative to the massesim1,m2,m3,m4, im5 respectively. Theseisolutions can be

foundionly if we meetithe sufficient condition ofiall rates equal to zero,

ξ
′
= η

′
= ξ

′′
= η

′′
i = 0

To find theizeros (ξ, η) oriequilibrium points / Lagrangeipoint, we need toisolve

these equations numerically oridrawing contour plot usingiMathematica. The

classification ofiequilibrium points for restrictedicollinear six body problemiis dis-

cussed in the followingicases:

4.4 Case 1: Whenia ∈ [0.20 , 0.250], b = 0.5

Thereiare two equilibriumipoints if we selectia = 0.20 as a marginalicase, for

a ∈ [0.20 , 0.250]. Ifiwe choose any otherivalue of a from the interval other
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than 0.20 than thereiexits eight eqiulibrium points.

The blue contour line represents the contour of Uξ = 0 and orange contour line

represents the contour of Uη = 0, respectively. The black dots show the position

of mass and the red dots show the position of equilibrium points . (See Figures

4.6 to 4.9 below)

Equilibrium points, when a = 0.20, b = 0.5.

we take a = 0.20 any point in the interval [0.20 , 0.250], the corresponding

values are b = 0.5, m = 0.005 and M = 0.03219.

Figure 4.1 shows that there are two equilibrium points E1, E2. They are collinear

along y − axis.

-0.4 -0.2 0.0 0.2 0.4
-0.4

-0.2

0.0

0.2

0.4

ξ

η

m1m4m2 m5 m3

E1

E2

Uξ

Uη

Figure 4.1: For 0.20 ≤ a ≤ 0.250, contour plot of Uξ = 0 (blue) and
Uη = 0 (orange), when a = 0.20, b = 0.5, m = 0.00 and M = 0.0363136.
Red dots represent the position of massess (mi, i = 1, 2, 3, 4, 5) and black

dots represent position of equilibrium points (Ei, i = 1, 2).
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Equilibrium points, when a = 0.220, b = 0.5

We take a = 0.220 to be any point in the interval, the corresponding value are

b = 0.5 , m = 0.005 and M = 0.03219.

Figure 4.2 shows that there are eight equilibrium points. Two equilibrium points

E1 and E2 are collinear along y−axis and other six equilibrium points E4, E5,

E6, E7, and E8 are collinear along x− axis.

-0.5 0.0 0.5

-0.4

-0.2

0.0

0.2

0.4

ξ

η

m2 m4 m1 m5 m3

E1

E2

E3 E4 E5 E6 E7 E8 Uξ

Uη

Figure 4.2: For 0.20 ≤ a ≤ 0.250, contour plot of Uξ (blue) and Uη
(orange), when a = 0.220, b = 0.5, m = 0.005 and M = 0.03219. Red
dots represent the position of equilibrium points(Ei, i = 1, 2, 3, 4, 5, 6, 7, 8),

and black dots represent position of masses (mi, i = 1, 2, 3, 4, 5)

Equilibrium points, when a = 0.233, b = 0.5
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We take a = 0.233 to be any point in the interval [0.20 , 0.250], the corre-

sponding values are b = 0.5 , m = 0.018333 and M = 0.0256997.

Figure 4.3 shows that there are eight equilibrium points. Two equilibrium points

E1 and E2 are collinear along y−axis and other six equilibrium points E4, E5,

E6, E7, and E8 are collinear along x− axis.

-0.5 0.0 0.5

-0.4

-0.2

0.0

0.2

0.4

ξ

η

m2 m4 m1 m5 m3

E1

E2

E3 E4 E5 E6 E7 E8 Uξ

Uη

Figure 4.3: For 0.20 ≤ a ≤ 0.250, contour plot of Uξ (blue) and Uη (or-
ange), when a = 0.233, b = 0.5, m = 0.018333 and M = 0.0256997. Red
dots represent the position of equilibrium points(Ei, i = 1, 2, 3, 4, 5, 6, 7, 8),

and black dots represent position of masses (mi, i = 1, 2, 3, 4, 5).

Equilibrium points, when a = 0.244, b = 0.5

We take a = 0.244 to be any point in the interval [0.20 , 0.250], the corre-

sponding values are b = 0.5, m = 0.057222 and M = 0.0125336.

Figure 4.4 shows that there are eight equilibrium points. Two equilibrium points
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E1 and E2 are collinear along y−axis and other six equilibrium points E4, E5,

E6, E7, and E8 are collinear along x− axis.

-1.0 -0.5 0.0 0.5 1.0
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E3 E4 E5 E6 E7 E8
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Uη

Figure 4.4: For 0.20 ≤ a ≤ 0.250, contour plot of Uξ (blue) and Uη (or-
ange), when a = 0.244, b = 0.5, m = 0.057222 and M = 0.0125336. Red
dots represent the position of equilibrium points(Ei, i = 1, 2, 3, 4, 5, 6, 7, 8),

and black dots represent position of masses (mi, i = 1, 2, 3, 4, 5).

4.5 Case 2: Whenia ∈ [0.87 , 2.0], b = 0.5

Thereiare four equilibriumipoints if we selectia = 0.87 as a marginalicase, for

a ∈ [0.87 , 2.0]. Ifiwe choose any otherivalue of a from the interval [0.87 , 2.0]

other than a = 0.87 than thereiexits eight equilibrium points.

Equilibrium points, when a = 0.87, b = 0.5
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We take a = 0.87 to be any point in the interval [0.87 , 2.0], the corresponding

values are b = 0.5, m = 0.1 and M = 0.00.

Figure 4.5 shows that there are eight equilibrium points. Two equilibrium points

E1 and E2 are collinear along y − axis, two equilibrium points E3 and E4 are

collinear along x− axis.
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Figure 4.5: For 0.87 ≤ a ≤ 2.0, contour plot of Uξ (blue) and Uη (orange),
when a = 0.87, b = 0.5, m = 0.1 and M = 0.0142598. Red dots represent
the position of equilibrium points(Ei, i = 1, 2, 3, 4), and black dots represent

position of masses (mi, i = 1, 2, 3, 4, 5).

Equilibrium points, when a = 1.08, b = 0.5

We take a = 1.08 to be any point in the interval, the corresponding values are

b = 0.5, m = 0.248762 and M = 0.2989718.

Figure 4.6 shows that there are eight equilibrium points. Two equilibrium points
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E1 and E2 are collinear along y−axis and other six equilibrium points E4, E5,

E6, E7, and E8 are collinear along x− axis.
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Figure 4.6: For 0.87 ≤ a ≤ 2.0, contour plot of Uξ (blue) and Uη (orange),
when a = 1.08,b = 0.5, m = 0.248762 and M = 0.2989718. Red dots
represent the position of equilibrium points(Ei, i = 1, 2, 3, 4, 5, 6, 7, 8), and

black dots represent position of masses (mi, i = 1, 2, 3, 4, 5).

Equilibrium points, when a = 1.32, b = 0.5

We take a = 1.32 to be any point in the interval, the corresponding values are

b = 0.5, m = 0.473939 and M = 1.61644.

Figure 4.7 shows that there are eight equilibrium points. Two equilibrium points

E1 and E2 are collinear along y−axis and other six equilibrium points E4, E5,

E6, E7, and E8 are collinear along x− axis.
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Figure 4.7: For 0.87 ≤ a ≤ 2.0, contour plot of Uξ (blue) and Uη (orange),
when b = 0.5 a = 1.32, m = 0.473939 and M = 1.61644. Red dots
represent the position of equilibrium points(Ei, i = 1, 2, 3, 4, 5, 6, 7, 8), and

black dots represent position of masses (mi, i = 1, 2, 3, 4, 5).

Equilibrium points, when a = 1.98, b = 0.5 We take a = 1.98 to be

any point in the interval, the corresponding values are b = 0.5 , m = 1.07242

and M = 16.78364.

Figure 4.8 shows that there are eight equilibrium points. Two equilibrium points

E1 and E2 are collinear along y−axis and other six equilibrium points E4, E5,

E6, E7, and E8 are collinear along x− axis.
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Figure 4.8: For 0.87 ≤ a ≤ 2.0, contour plot of Uξ (blue) and Uη (orange),
when a = 1.98, b = 0.5, m = 1.07242 and M = 16.78364. Red dots
represent the position of equilibrium points(Ei, i = 1, 2, 3, 4, 5, 6, 7, 8), and

black dots represent position of masses (mi, i = 1, 2, 3, 4, 5).

4.6 Stability Analysis of Equilibrium Points

Thisosection is dedicated toothe mathematicaloanalysis of the stabilityoof equilib-

rium pointsoor lagrange points in R6BP. To checkowhether the equilibriumopoints

or lagrangian points areostable orounstable, we perform an individual eigenvalue

analysis for each equilibrium point.

Eigenvalues for Case-1:
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Choose a = 0.20 from [0.20 , 0.250] and the corresponding values are b = 0.5,

M = 0.0363136, m = 0.00 and E1(0.0, 0.362) (see figure 4.1), we will follow

the procedure given in chapter 2 to analysis of stability. The Jacobian matrix is

A =

0.748956 0.00

0.004 2.24685

 .
The eigenvalues of matrix A are: (2.24685, 0.748956), likewise, we have found

eigenvalues for equilibrium points generated when

a = 0.20, 0.220, 0.233, 0.244, 0.87, 1.08, 1.32, 1.98. We have shown coordi-

nates of equilibrium points and their corresponding eigen values along with the

stability status in Table 4.1 to 4.5 for different values of a.

Table 4.1: Analysis of stability when a = 0.20, b = 0.500,
M = 0.0363136, m = 0.00.

Sr.No Equilibrium points Eigenvalues Stability

1 E1(0.0, 0.362) (2.24685, 0.748956) unstable

2 E2(0.0, -0.362) (2.24685, 0.748956) unstable

The same approach also applies to each equilibrium point , the eigenvalues are

given below:
Table 4.2: Analysis of stability when m = 0.0054629, M = 0.0321903,

a = 0.220, b = 0.500.

Sr.No Equilibrium points Eigenvalues Stability

1 E1(0.0, 0.362) (2.23531, 0.767071) unstable

2 E2(0.0, -0.362) (2.23531, 0.7670716) unstable

3 E3(-0.621, 0.000459) (8.32723, -2.66361) unstable

4 E4(0.621, 0.000459) (8.32723, -2.66361) unstable

5 E5(-0.408, 0.004131) (25.0674, -11.0143) unstable

6 E6(0.408, 0.004131) (25.0674, -11.0143) unstable

7 E7(-0.071, 0.000459) (53.7948, -25.3966) unstable

8 E8(0.071, 0.000459) (53.7948, -25.3966) unstable
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Table 4.3: Analysis of stability when m = 0.0183336, M = 0.0256997,
a = 0.233, b = 0.5.

Sr.No Equilibrium points Eigenvalues Stability

1 E1(0.002596, 0.3884) (2.31164, 0.69892) unstable

2 L2(0.002596, -0.3884) (2.31164, 0.69892) unstable

3 E3(-0.695, 0.001363) (6.66097, -1.83047) unstable

4 E4(0.695, 0.001363) (6.66097, -1.83047) unstable

5 E5(-0.370, 0.004089) (38.5901, -17.7694) unstable

6 E6(0.370, 0.004089) (38.5901, -17.7694) unstable

7 E7(-0.105, 0.001363) (59.2515, -28.1199) unstable

8 E8(0.105, 0.001363) (59.2515, -28.1199) unstable

Table 4.4: Analysis of stability when m = 0.057222, M = 0.0125336,
a = 0.244, b = 0.5,.

Sr.No Equilibrium points Eigenvalues Stability

1 E1(0.003083, 0.4837) (2.38364, 0.619541) unstable

2 E2(0.003083, -0.4837) (2.38364, 0.619541) unstable

3 E3(-0.80, 0.001785) (5.68192, -1.34095) unstable

4 E4(0.80, 0.001785) (5.68192, -1.34095) unstable

5 E5(-0.330, 0.001785) (67.1707, -32.0746) unstable

6 E6(-0.330, 0.001785) (67.1707, -32.0746) unstable

7 E7(-0.1549, 0.001785) (70.765, -33.8701) unstable

8 E8(0.1549, 0.001785) (70.765, -33.8701) unstable

Table 4.5: Analysis of stability when m = 0.150352, M = 0.0142598,
a = 0.249, b = 0.5.

Sr.No Equilibrium points Eigenvalues Stability

1 E1(0.00357, 0.65) (2.44069, 0.567472) unstable

2 E2(0.00357, -0.65) (2.44069, 0.567472) unstable

3 E3(-0.945, 0.002336) (4.76689, -0.883443) unstable

4 E4(0.945, 0.002336) (4.76689, -0.883443) unstable

5 E5(-0.325, 0.001785) (4.16668, -2.00231) unstable

6 E6(0.325, 0.001785) (4.16668, -2.00231) unstable

7 E7(-0.175, 0.001785) (-5.11082, 4.68278) unstable

8 E8(0.175, 0.001785) (-5.11082, 4.68278) unstable
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Eigenvalues for Case-2 :

To checkowhether the equilibrium points or lagrangian points areostable or unsta-

ble, we perform an individual eigenvalue analysis for each equilibrium point. We

have also conducted astability analysis for the Case-2 in which the interval for a is

(0.87 , 2.0). The coordinates of equilibrium points and corresponding eigen values

along with the stability status are given in Table 4.6−4.9 for different values of a.

Table 4.6: Analysis of stability when m = 0.1, M = 0.014,
a = 0.87, b = 0.5.

Sr.No Equilibrium points Eigenvalues Stability

1 E1(0.00557, 0.568) (2.40987, 0.597351) unstable

2 E2(0.00557, -0.568) (2.40987, 0.597351) unstable

3 E3(-0.8745, 0.006328) (5.18135, -1.08024) unstable

4 E4(0.8745, 0.006328) (5.18135, -1.08024) unstable

There are fouroequilibrium pointso(see Table 4.6) and all thesesoequilibriumopoints

are unstable. The points are E1(0.00557, 0.568), E2(0.00557, -0.568), E3(-0.8745,

0.006328), E4(0.8745, 0.006328).

Table 4.7: Analysis of stability when m = 0.248762, M = 0.298971,
a = 1.08, b = 0.5.

Sr.No Equilibrium points Eigenvalues Stability

1 E1(0.004003, 0.9031) (2.30876, 0.692497) unstable

2 E2(0.004003, -0.9031) (2.30876, 0.692497) unstable

3 E3(-1.59, 0.00176) (6.34397, -1.67198) unstable

4 E4(1.59, 0.00176) (6.34397, -1.67198) unstable

5 E5(-0.776, 0.00528) (45.5469, -21.263) unstable

6 E6(0.776, 0.00528) (45.5469, -21.263) unstable

7 E7(-0.2457, 0.00528) (67.1595, -32.0584) unstable

8 E8(0.2457, 0.00528) (67.1595, -32.0584) unstable
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Table 4.8: Analysis of stability when m = 0.4739392, M = 1.61644,
a = 1.32, b = 0.5.

Sr.No Equilibrium points Eigenvalues Stability

1 E1(0.00, 1.339) (2.17117, 0.832416) unstable

2 E2(0.00, -1.339) (2.17117, 0.832416) unstable

3 E3(-2.26, 0.00) (5.37522, -1.18761) unstable

4 E4(2.26, 0.00) (5.37522, -1.18761) unstable

5 E5(-0.776, 0.00528) (68.0048, -32.4941) unstable

6 E6(0.776, 0.00528) (68.0048, -32.4941) unstable

7 E7(-0.2457, 0.00528) (128.039, -62.4788) unstable

8 E8(0.2457, 0.00528) (128.039, -62.4788) unstable

Table 4.9: Analysis of stability when m = 1.07242, M = 16.7836,
a = 1.988, b = 0.5.

Sr.No Equilibrium points Eigenvalues Stability

1 E1(0.0252, 2.765) (2.11599, 0.881011) unstable

2 E2(0.0252, -2.765) (2.11599, 0.881011) unstable

3 E3(-4.159, 0.01562) (4.52328, -0.761639) unstable

4 E4(4.159, 0.01562) (4.52328, -0.761639) unstable

5 E5(-0.8409, 0.01563) (83.0441, -39.9794) unstable

6 E6(0.8409, 0.01563) (83.0441, -39.9794) unstable

7 E7(-0.25, 0.01563) (286.796, -141.099) unstable

8 E8(0.25, 0.01563) (286.796, -141.099) unstable

4.7 Permitted Regions of Motion

One of the most important constants of dynamical system is the Jacobian con-

stant ‘C’ of motion, which represent the motion of the infinitesimal body. It

can be used to sketch the regions of permitted motion. The boundaries be-

tween the prohibited and permitted regions are called zero velocity curves. In

ourogeometry, weomust nowoinvestigate these possibilitiesoi.e., on the x-axis, five

masses areoplaced: m1,m2,m3,m4, and m5, with theoinfinitesimal massom6
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moving inotheogravitational field of m1 − m5. In Mathematica, we draw re-

gionsofor different values of theoJacobian constant for Equation (4.24), and we

obtainotwo regions, which are following:

1. Permissible region of motiono(white area), where m6 can freely move.

2. Shaded areao(blue), where the motion of m6 is not allowed.

One can see easily thatothe Figureso4.9-4.34 by increasing the value ofothe Jaco-

bianoconstant C from C=0.25 to C=0.36, the white region ofomotionoof m6 is re-

ducing and for C=26.0 the masses m1,m2,m3,m4,m5 areocompletely trapped,

so for this, the valueoof C the m6 can not reach around m1,m2,m3,m4,m5.

4.7.1 Permitted Regions When a = 0.20 and b = 0.5

Figures 4.10 to 4.34 show theoregions, where m6 can move when a = 0.20 and

b = 0.5. It is clearly visibleothat by increasing the value of ‘C’ the permitted

regions reduces.
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Figure 4.9: Permitted regions of motion for C=0.25.
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Figure 4.10: Permitted regions of motion for C=0.30.
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Figure 4.11: Permitted regions of motion for C=0.31.
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Figure 4.12: Permissible regions of motion for C=0.36.

4.7.2 Permitted Regions When a = 0.220 and b = 0.5
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Figure 4.13: Permitted regions of motion for C=0.25.
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Figure 4.14: Permitted regions of motion for C=0.26.
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Figure 4.15: Permitted regions of motion for C=0.34.
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Figure 4.16: Permitted regions of motion for C=0.36.

4.7.3 Permitted Regions When a = 0.233 and b = 0.5
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Figure 4.17: Permitted regions of motion for C=0.4543.



Dynamics of 6th Particle 48

(-0.5, 0) (-0.23, 0) (0, 0) (0.23, 0) (0.5, 0)

-0.5 0.0 0.5

-0.5

0.0

0.5

m2 m4 m1 m5 m3

Figure 4.18: Permitted regions of motion for C=0.463.
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Figure 4.19: Permitted regions of motion for C=0.473.
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4.7.4 Permitted Regions When a = 0.244 and b = 0.5
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Figure 4.20: Permitted regions of motion when C=0.77.
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Figure 4.21: Permitted regions of motion when C=0.75.
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Figure 4.22: Permitted regions of motion for C=0.80.

4.7.5 Permitted Regions When a = 0.249 and b = 0.5
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Figure 4.23: Permitted regions of motion for C=0.86.
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Figure 4.24: Permitted regions of motion for C=1.01.
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Figure 4.25: Permitted regions of motion for C=1.05.
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4.7.6 Permitted Regions When a = 1.08 and b = 0.5
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Figure 4.26: Permitted regions of motion for C=2.50.
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Figure 4.27: Permitted regions of motion for C=2.85.
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Figure 4.28: Permitted regions of motion for C=3.1.

4.7.7 Permitted Regions When a = 1.32 and b = 0.5
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Figure 4.29: Permitted regions of motion when C=5.3.
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Figure 4.30: Permitted regions of motion for C=6.0.
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Figure 4.31: Permitted regions of motion for C=7.0.
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4.7.8 Permitted Regions When a = 1.98 and b = 0.5
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Figure 4.32: Permitted regions of motion for C=19.9.
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Figure 4.33: Permitted regions of motion for C=24.9.
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Figure 4.34: Permitted regions of motion for C=26.0.



Chapter 5

Conclusions

In this study we have investigated the motion of an infinitesimal mass under the

gravitational influence of five large masses (primaries) is investigated. The pri-

maries maintain collinear central configuration through out their motion. The

pair of bigger masses are placed in the middles and the pair of smaller masses are

placed at each corner and one smaller mass is at center of mass (0, 0). We have

characterized the collinear central configuration and discovered that it holds for a

fixed value of b = 0.5, and for intervals 0.20 ≤ a ≤ 0.250, 0.87 ≤ a ≤ 2.0.

We sub-divided each intervals for a into four intervals where there is a clear change

in position and number of equilibrium points. There are 2, 4, and 8 equilibrium

points on the entire interval of a in various cases are observed. Using Mathemat-

ica stability analysis by applying the eigen value test for stability of equilibrium

points is performed. According to this investigation, all the equilibrium points are

unstable.By changing the value of Jacobian constant C, the permissible region

reduces and the prohibited region of motion of m6 is also discussed.
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