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Abstract

This thesis is consists of two parts. In first part the collinear central configuration
for five masses is discussed. In the second part, the equation of motion of 6™
particle is considered in the gravitational field of five masses. After finding the
equation of motion of 6" particle the equilibrium points and their linear stability
analysis is examined by using Mathematica. In the last part the permissible region

of motion is explored for test particle by using different values of Jacobian constant.
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Chapter 1

Introduction

The n-body problem in mechanics is the problem of determining the individual
motions of a group of celestial objects that interact gravitationally towards each
other. The purpose behind resolving these sort of problems is to know about the
motion of the moon, the sun, planets, visible stars etc. In the 17th century math-
ematicians and astronomers were attracted to n-body problem. Isaac Newton re-
solved two body-problem (2BP) through his laws of motions and the universal law
of gravity. There is no significant way to solve the problem if n > 3, but if we have
a restricted n-body problem it may provide a particular solution. Mathematicians
and astronomers have continued working on the n-body problem during the last
four centuries. First, in the 17th century, Kepler defined the elliptical trajectories
of planets around the sun in his planetary laws of motion between 1609 and 1619
“Philosophiae Naturalis Principia Mathematica” [1].

One of the most important works in the history of science, in which Newton de-
rived and formulated Keplers law. As a special case, the law for two parti-

cles when they are interacting with each others by gravitational force is:

r, (1.1)

where the two masses m; and my are apart from each others by r and G, is the

universal gravitational constant. After the justification of Keplers laws, Newton
1



Introduction 2

turned his attention to comparatively more complex systems. Alexis Clairaut suc-
ceeded in presenting an approximation for the 3BP. After some small adjustment,
his work accounted for the perigee of the moon, which was the aim of Newton. He
won the St. Petersburg Academy prize in 1752. When Halleys comet passed by
earth in 1759, the value of his approximations was amply to demonstrate its mo-
tion. He himself take off the margin of error which he predicted in his equations,
within a month. Leonhard Euler also work on the 3BP at the same time. The ex-
tremely influential work of Henri Poincare on 3BP has end the classical period of
work. King Oscar II of Sweden, in the late 19th century setup an award for solv-
ing the n-body problem on the recommendation of Karl Weierstrass, Gsta Mittag-
Leffler, and Charles Hermite converges uniformly [2]. Many eminent mathemati-
cians and astronomers like Carl Gustav Jacob Jacobi, Lagrange and Euler working
on it in the 19th century. Until 1991, the general solution to the problem was re-
mained unsolved, when a Professor in the University of Arizona, Qiudong Wang
published “The global solution of n-body Problem” [3]. Gomatan et al. (1999),
Kozak and Oniszk (1998) and Majorana (1981) derived equilibrium solutions and
analyzed their stability for different types of four-body problems. Majorana (1981)
studied the linear stability of the equilibrium points in the restricted four-body
problem.More recent works on the collinear problem include those of Douskos
(2010), and Ouyang and Xie (2005). Douskos discussed the existence and stability
of the collinear equilibrium points of a generalized Hill problem and showed the
existence of two equilibrium points for a positive oblateness co-efficient. Ouyang
and Xie found regions on the configuration space where it is possible to choose

masses for collinear configuration of four bodies which will make it central.

1.1 Central Configuration

A Central Configuration (C'C) is a special arrangement of point masses interacting
by Newton’s law of gravitation with the following property “The gravitational
acceleration vector produced on each mass by all others should point

toward the center of mass and proportional to the distance to the center
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of mass”.

CC play an important role in the study of the Newtonian n-body problem. For an
arbitrary given set of masses the number of classes of planar non collinear central
configurations of the n-body problem has been only solved for n = 3. In this case
they are the three collinear and the two equilateral triangle central configurations,
due to Euler [4] and Lagrange. Recently, Hampton and Moeckel [5] proved that for
any choice of four masses there exist a finite number of classes of central configu-
rations. For five or more masses this result is unproved, but recently an important
contribution to the case of five masses has been made by Albouy and Kaloshin [6].
Under the assumption that every central configuration of the four-body problem
has an axis of symmetry when the four masses are equal, the central configura-
tions were characterized studying the intersection points of two planar curves in
[7]. Later on in [8, 9] Albouy provided a complete proof for the classes of central
configurations of the four-body problem with equal masses. Bernat, Llibre and
Perez Chavela [10] complete the characterization of the kite planar noncollinear

classes of central configurations with three equal masses, started by Leandro in

11].

1.1.1 Restricted n-Body Problem

Restricted n body problem is defined that n — 1 masses (m; = 3,4,5,....,n —

1) and one infinitesimal (test particle) mass m, which has negligible mass as

compared with m;, i.e., m << m;. From the above defination we can eas-
ily conclude that the mass m does not have any gravitaional influence on all
m;, due to the condition m << m;. The first such problem restricted three
body problem (R3TB) was described by Henri Pioncare [2]. Euler’s solved the
three-body problem for the motion of a particle that is influenced by the gravita-
tional field of two other point masses fixed in space. This problem is explicitly
solvable and provides an approximate solution for moving particles in the grav-
itational fields. A systematic analysis of periodic orbits was done in the prob-

lem of the two-dimensional, elliptic, restricted three-body [12]. The position and
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stability of the five points of equilibrium in the planar, circular restricted three-
body problem is investigated when a variety of studies of drag forces act on the
third body [13].

In the restricted three-body problem, the presence of transversal ejection-collision
orbits discussed [14]. Conley et al. discussed new long periodic solutions in plane, of
the restricted three-body problem [15]. Lagrange points and their stability in a
restricted four-body problem where three bodies are finite and fourth
is infinitesimal, do not affect the movement of the three bodies moving in circles
around their center of mass fixed at the origin explained in [16]. Sim-mons
and Bakker gave analysis (linear stability) of a rhomboidal 4BP and show
that collisions (isolated binary) can be regularized at origin [17]. Prokopenya dis-
cussed the stability of the equilibrium solutions in the elliptic restricted many-body
problem [18]. Planar central configurations of the Four-Body Problem with three
equal masses discussed in [10]. Santos discussed each equilibrium solution must be

defined by the primaries along a diagonal [19].

1.2 Thesis Contribution

We are setting a restricted symmetric collinear six body problem that includes
symmetrical arrangement of two pairs of masses and one mass is at origin. The
masses are mq, mo, M3, My, ms and mg. Consider theses masses m; = my = mg =
m, my = ms = M, and small mass mg moving so that their configuration is
always in a straight line. Here we study the positions of equilibrium points of mg

in the gravitational field of 5 big masses and we will check their stability.

1.3 Dissertation Outlines

We further divided this dissertation into 4 chapters.
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1. Chapter 2:
This chapter includes some important definitions concerning the celestial me-
chanics, Newton’s laws of motion and the planetary motion laws of Kepler,

the two body problem (2BP) and solution of two body problem.

2. Chapter 3:

In this chapter characterization of collinear configuration is discussed.

3. Chapter 4:
In this chapter the dynamics of 6" body, equilibrium solutions and analy-

sis the stability of equilibrium points are briefly explained .

4. Chapter 5:
This chapter summarizes the whole study and includes the conclusion arising

from entire discussion.

Bibliography contains a list of the references used in the dissertation.



Chapter 2

Some Preliminaries

This chapter contains fundamental definitions, fundamental concepts, universal

principles and laws that will make our research work more comprehensible.
Definition 2.1.1. (Motion)

“Motion is the phenomenon in which an object changes its position over time.
Motion is mathematically described in terms of displacement, distance, velocity,

acceleration, speed, and time.” [20]

Definition 2.1.2. (Mechanics)
“Mechanics is the science that studied the motion of objects and can be divided

into the following:
1. Kinematics, describes how objects move in terms of space and time.

2. Dynamics, described the cause of the object’s motion.

3. Statics, deals with the conditions under which an object subjected to various

forces is in equilibrium.” [21]

Definition 2.1.3. (Vectors)
“A vector quantity may be geometrically represented by a straight line, having

a length proportional to the magnitude of the vector quantity and drawn in the

6
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same direction and sense as that of the given vector quantity.” [22]

Definition 2.1.4. (Scalar)
“Many quantities in physics can be completely specified by giving their magnitude
alone”. [22]

Definition 2.1.5. (Momentum)
“The linear momentum (or quantity of motion as was called by Newton) of a

particle of mass p is a vector quantity defined as:
p=mv, (2.1)

where v is the velocity of the particle. A fast moving car has more momentum

than a slow moving car of same mass.” [23]

Definition 2.1.6. (Conservation of Linear Momentum )
“If no net external force acts on a system of particles, the total linear momentum
p of the system cannot change. This result is called the law of conservation of

linear momentum. It can also be written as
Pi = Py

In other words, this equation says that, for a closed, isolated system, ( total linear
momentum at some initial time ¢;) = (total linear momentum at some later time

). [23]

Definition 2.1.7. (Newton’s Second Law in Term of Momentum)
“Newton’s second law can be expressed in terms of momentum for a particle like

object of constant mass as
dv d dp

F:ma:E:%(mv): o

P:ZP¢~

1
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The total linear momentum p of a system of particles is defined as the vector sum

of the individual linear momentum.” [23]

Definition 2.1.8. (Angular Momentum)
“Angular momentum L of a particle of mass m and linear momentum L is a vector

quantity defined as:
L=pxp,

where p is a position vector of a particle relative to an origin O that is in an

inertial frame.” [23]

Definition 2.1.9. (Conservation of Angular Momentum )

“Law of conservation of angular momentum, can also be written as or net angular
momentum at some Initial time ¢;) = (net angular momentum at some later time
tr.) If the net external torque acting on a system is zero, the angular momentum
r of the system remains constant, no matter what changes take place within the

system.” [23]

Definition 2.1.10. (Torque)

“A quantity called torque 7 as the product of the two factors and write it as

T=rxF.

The magnitude of 7 is 7=rF sin 0, where r is the perpendicular distance between
the rotation axis at 0 and an extended line running through the vector F, and @

is the angle between the position and force vectors.” [23]

Definition 2.1.11. (Central Force Field)

“A force is said to be central under two conditions. First, the direction of the
force must always be towards or away from fixed point. The point is known as the
center force. Second, the magnitude of the force should only proportional to the

distance r between the particle and center of the force. The central force may be
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written as

F = f(r)ry, (2.2)

where ry is a unit vector in the direction of r. The most widely known are the

gravitational force and Coulomb force.” [21]

Definition 2.1.12. (Degree of Freedom)

“Consider the motion of free particle. To describe this motion we use three inde-
pendent coordinates such as the Cartesian coordinates x,y,z. The particle is free
to execute motion along any one axis independently with change in one coordi-
nate only. The above statement is equivalent to saying that the particle has three

degree of freedom.” [22]

Definition 2.1.13. (Center of Mass of System of Particle )

“Center of mass ¢ of system of particle is the point that moves as through all of
the system mass were concentrated there and all external forces were applied.For
example, the center of mass of a uniform disc shape would be at its center. Some-
times the center of mass doesn’t fall anywhere on the object. The center of mass

of a ring for example is located at its center”. [23]

(mq1 4+ mo + ... + my,)T = Mmyry + mary + ... + My, Iy,

. (m1 +mo + ... + my,)T
- M

9

where

M = i m;.
=1

Definition 2.1.14. (Center of Gravity)

“The gravitational force on an extended body is the vector sum of the gravita-
tional forces acting on the individual elements (the atoms) of the body. Instead of
considering all those individual elements, we can say that the gravitational force

F, on a body effectively acts at a single point, called the center of gravity (cog)
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of the body. An example of center of gravity is the middle of a seesaw.” [23]

_ Widi + Wads + Wads + ... + Wid,
N w

G.

Definition 2.1.15. ( Principle of Superposition )
“This is a general principle that says a net effect is the sum of the individual

effects.” [23]

Definition 2.1.16. ( Equilibrium )
“The two requirements for equilibrium

are:

1. The linear momentum p of its center of mass is constant.

2. Its angular momentum L about its center of mass, or about any other point,

is also constant.

To find the zeros (&, i) or equilibrium points / Lagrange point, we need to solve th
equations numerically or drawing contour plot using Mathematica. The
classification of equilibrium points for restricted collinear six body problem is dis-

cussed.

We say that such objects are in equilibrium.” [23]

Definition 2.1.17. (Inertial Frame of Reference)

“A frame of reference that remains at rest or moves with constant velocity with
respect to other frames of reference is called inertial frame of reference. Actually,
an unaccelerated frame of reference is an inertial frame of reference. In this frame
of reference a body does not acted upon by external forces. Newton’s laws of
motion are valid in all inertial frames of reference. All inertial frames of reference

are equivalent.” [23]
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motion are valid in all inertial frames of reference. All inertial frames of reference

are equivalent.” [23]

Definition 2.1.18. (Point-Like Particle)

“A point-like particle is an idealization of particles mostly used in different fields
of physics. Its defining features is the lacks of spatial extension: being zero-
dimensional, it does not take up space. A point-like particle is an appropriate
representation of an object whose structure, size and shape is irrelevant in a given
context. e.g., from far away, a finite-size mass (object) will look like a point-like

particle.” [24]
Definition 2.1.19. (Lagrange Points)

“The equilibrium solutions for the three-body problem are named after Joseph-
Louis Lagrange, an 18th-century mathematician who wrote about them in 1772.
A Lagrange point is a location in space where the combined gravitational forces
of two large bodies, such as Earth and the sun or Earth and the moon, equal the

gravitational force felt by a much smaller third body. Of the five Lagrange points,

FIGURE 2.1: Lagrane points

three are unstable and two are stable. The unstable Lagrange points - labeled
Ly, Ly and Lj - lie along the line connecting the two large masses. The stable

Lagrange points - labeled Ly and Ly - form the apex of two equilateral triangles
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that have the large masses at their vertices. L4 leads the orbit of earth and Lg
follows. The L, point of the Earth-Sun system affords an uninterrupted view of
the sun and is currently home to the Solar and Heliospheric Observatory Satel-
lite SOHO. The Lo point of the Earth-Sun system was the home to the WMAP
spacecraft, current home of Planck, and future home of the James Webb Space
Telescope. L is ideal for astronomy because a spacecraft is close enough to read-
ily communicate with Earth, can keep Sun, Earth and Moon behind the space-
craft for solar power and (with appropriate shielding) provides a clear view of
deep space for our telescopes. The L; and Lo points are unstable on a time
scale of approximately 23 days, which requires satellites orbiting these positions

to undergo regular course and attitude corrections.”

2.1 Kepler’s Three Laws of Planetary Motion

“Kepler’s three laws of planetary motion can be described as follows:

1. The orbit of a planet is an ellipse with the Sun at one of the two foci.

2. A line segment joining a planet and the Sun sweeps out equal areas during

equal intervals of time.

3. The square of a planet’s orbital period is proportional to the cube of the

length of the semi-major axis of its orbit. Mathematically, Kepler’s third

472
T2 = <GM ) r3,

where T is the time period, r is the semi major axis, Ms is the mass of sun

law can be written as:

and G is the universal gravitational constant.” [25]

2.2 Isaac Newton’s Laws of Motion

“The following three laws of motion given by Newton are considered the axioms

of mechanics:
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1. First law of motion
Newton’s first law of motion essentially states that a point object subject to
zero net external force moves in a straight line with a constant speed (i.e., it
does not accelerate). However, this is only true in special frames of reference
called inertial frames. Indeed, we can think of Newton’s first law as the

definition of an inertial frame.”

2. Second law of motion
“Newton’s second law of motion essentially states that if a point object is

subject to an external force F, then its equation of motion is given by

d d
F=—(mv)= 2.
dt dt
If m is independent of time this becomes
dv
F=m— = ma,
dt

where the momentum p is the product of the object’s inertial mass m and

its velocity v.”

3. Third law of motion

“Consider a system of N mutually interacting point objects. Let the 2th
object, whose mass is m;, be located at position vector p;. Suppose that
this object exerts a force fj; on the jth object. Likewise, suppose that the
Jjth object exerts a force f;; on the ¢th object. Newton’s third law of motion
essentially states that these two forces are equal and opposite, irrespective
of their nature. In other words, f;; = —fj;.

For example, a book resting on a table applies a downward force equal to its

weight on the table.” [25]

2.2.1 Newton’s Universal Law of Gravitation

“Newton’s law of gravitation: Every particle attracts any other particle with a

gravitational force of magnitude
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mi1Mo

F=G

Here m, and m are the masses of the particles, p is the distance between them,
and G is the gravitational constant, with a value that is now known to be G =
6.67 X 1071 m3kg~1s72 and F is the gravitational force acting on particle 1
(my) due to particle 2 (my). The force is directed toward particle 2 and is said

to be an attractive force because particle 1 is attracted toward particle.” [25]

2.3 The Two-Body Problem

“A two-body problem is a dynamical system that consists of two freely moving
point objects exerting forces on one another. Assume the first object has a mass of
mg and has theposition vector p;. Similarly, the second object has a mass of m4
and has theposition vector ps. Let the force applied by first objecton the second is
(Fo1) and, theforce exerted by second object on first is (F1g). The corresponding

equations are:

d2I'1
1 dt2 - _F10 (23)
d2r2
ms dt 2 - FOl” [25] (24)

2.3.1 The Two Body Problem Solution

“The governing law for the two-body is Newton’s universal gravitational law:

Mmooy

for two masses mg and m, separated by a distance of p, and G is the universal
gravitational constant. The aim here is to determine the path of the particles for
any time t, if the initial positions and velocities are known.

In Figure 2.1, the force of attraction Fq is directed along p towards mg, while

the force F; on my is in opposite direction.
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According to Newton’s 3rd law of motion,

FlO - —Fgl. (26)
From Figure 2.1,
mom
FlO =G ;3 1p. (27)

Using Newton’s 2nd law of motion and by Equations (2.6) and (2.7), the equa-
tion of motion of the particles under the influence of their mutual gravitational

attraction is

” d2p1 momm;
mop, = My di2 =G p3 P (2-8)
Center of Mass

O

FIGURE 2.2: Center of mass

P, (2.9)

where O is the reference point and p, and p, are the position vectors of mg and

my respectively. Adding Equations (2.8) and (2.9), we get

mgpll’ + mlp;’ =0, (2.10)

Integrating the above equation:

mop, + mip, = ki, (2.11)
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that the total linear momentum of the system i.e., MoV, + M1V, = k;

Again integrate Equation (2.11):

mop; + mi1p, = kit + ko, (2.12)
where k; and ko are constant vectors.
Using the concept of center of mass from 2BP, P is defined as:
m +m
— MoPy T by (2.13)
(mo + my)
m m
P oP; + 1P2’ (2.14)
my

where m; = mg + m;.
When we compare the derivative of Equation (2.14) with Equation (2.11), we

obtain
mP’ =k,
’ kl
= P = = constant.
myy

P = V. is constant, in which the velocity of the center of mass is v.

Subtracting Equations (2.8) and (2.9), we get:

” ” Gm]_ Gmo
P, — Py = e e (2.15)

” ” P
Py — Py = GE(mO + ml)a

” P
P

” P

=p +a— =0, (2.16)
p3

where the reduced mass is defined as &« = G(mgo + my) and p; — p, = —p, see
Figure 2.1.
With p as the cross product of Equation (2.16), we get:

” 2

«
p X ap +Ep><p=0
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=pxp =0, (2.17)

Integrating above equation:

pxp =1L, (2.18)
where L is a constant vector (Angular momentum), (2.18) may be expressed as,
=p X ap" =0,
=p X F =0,

” .
where F = ap’ = aa () is defined as “reduced mass” or “constant”.

According to definition of the angular momentum and torque , we obtain:

K (2.19)
T = —— = . .
a P

The result of comparing Equations (2.21) and (2.22) is:

. dK

Cdt’

p X F =0,
dK

— =0,
dt

= K = constant,

This demonstrates that the system’s angular momentum is constant.” [25]

2.3.2 The Transverse Components and Radial Components

of Velocity and Acceleration:

If p and @ are the polar coordinates in this plane shown in Figure 2.2. p’ and

pf’ are the velocity components along and perpendicular to the radius vector
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connecting mg and my, then,

’ dp 4 A
e S Ty 2.20
p=_ pt+ po g, (2.20)

where 7 and 5 are unit vectors parallel and perpendicular to the radius vector.

As a result of Equations (2.19) and (2.24),
p X (plg + pO'j') = p20'k = Kk, (2.21)
where k is a unit vector perpendicular to the orbit’s plane. We are able to write

p%0 = K, (2.22)

thus the constant K is seen to be twice the rate of description of area by the

radius vector, which is the mathematical expression of Kepler’s second law.

FIGURE 2.3: The transverse components and radial components of velocity and
acceleration

If we take the scalar product of Equation (2.16) with p’, we obtain
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by integrate the above equation, we get

1, , mou
-p.p — =C, (2.23)
2
1 o
—v? — — =C, (2.24)
2 P

where (' is a constant.
Components of the acceleration vector are paralleland perpendicular to the radius

vector, as determined by celestial mechanics (see Figure 2.2):

” 12 4 1 d roA
b=(p —pb )i+ -——(p6)j,
pdt

using this Equation in (2.11), we get

” ’ «
p’ —pb” = vl (2.25)
1d ,
——(p%0) = 0. 2.26
%) (2.20
Integrating Equation (2.30):
p?0 = K, (2.27)

which is the angular momentum integral, using the standard replacement of

; (2.28)

removing the time between (2.20) and (2.22) Equations:

d*>w  «@
«
= w = F + BCOS(G — 90). (230)

Substitute w = % in above equation:

1 o
; = %2 + B cos(0 — 6y),
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K2
=P

- 1—|—KTZBCOS(0—00),

is the polar form of the equation of the conic which may be written as:

. q
1+ e*cos( —6,)’

p

where

q=—
(87

. BK?
e = .

(8

Eccentricity e* classifies the trajectory of one celestial body around another.

1. Elliptical orbit:
An elliptical orbit is one in which 0 < e* < 1.

2. Parabolic orbit:

Parabolic orbit occurs when e* = 1.
3. Hyperbolic orbit:

In the case of e* > 1, the orbit is a hyperbolic orbital trajectory.

As aresult, the solution to the two-body problem (2BP)isa conic section with

Kepler’s first law as a particular case.



Chapter 3

Restricted Symmetric Collinear

Central Configuration for Six

Body

3.1 Introduction

A collinear five body problem that includes symmetrical arrangement of two pairs
of equal masses along each side of center of mass and one mass at the origin is
investigated by using Newton’s laws of motion and universal law of gravity. The
masses are sy, Maq, M3, My and my. The central configuration is analyzed with
the assumption m; = my = m3z = m and my = mgs = M. The larger
masses are placed in the middle and smaller masses are placed at the corner of

each side.

3.2 Collinear Configuration Characterization

For n-body problem the classical equation of motion is

- Pr — P; %
Z mk—J_S = p; . (3.1)
k=1 k #j IPx, — Pyl

21
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A central configuration of the m bodies where the acceleration vector of each

body is proportional to its position vector, and the constant of proportionality is

the same for n bodies. Therefore, a central configuration fulfills the equation:

Z my Pk — P; /3

K —

Pj)

= _wz(pj_c)a

(3.2)

here w? is an angular velocity which is also nonzero as well as constant, where ¢

is defined as

Cc =

Z?:l m]

wich is the center of mass for n bodies.

b

(3.3)

Substitute n = 5 in equation number (3.2), the CC’s equations for the general

five-body problem (5BP) are:

(P2 — P1) (ps — P1) (Pa—P1)  (Ps—P1)
Mo 3—|—m3 3—|—m4 35 3
|P2 —p1| |p3_P1| |p4—p1| |p5 —p1|
) (py — p21+m3 (p3 — pzl+m4 (Ps — p2i+m5 (ps — le
IP1 — Pal |P3 — Pal P4 — P2l |Ps — P2l
(P1 — P3) (P2 — P3) (P4 — P3) (Ps — P3)
1 5 T2 3—|—m4—3—|—m5—3
IP1 — Psl P2 — P3| P4 — P3| |Ps — P3|
(P1 — P4) (P2 — P4) (P3s — P4) (Ps — P4)
1 3 2 3—|—m3—3—|—m5—3
|P1 — P4l |P2 — P4l |P3 — P4l |Ps — P4l
(P — P5) (P2 — P5) (pPs — Ps) (P4 — P5)
1 3 T2 3 +ms 3 +ms 3
|P; — Psl P2 — Ps| |P3 — Ps| |Ps — Ps|

- _wz(pl _C)a

(3.4)

= _w2 (pz_c)a

(3.5)

= —w? (p3—C),

(3.6)

= —w? (p4—C),

(3.7)

= —w’ (Ps—c)-

(3.8)

Now consider the five masses mq, msy, ms, my, ms with their positions at p; =

(0,0), p, = (=b,0), p; = (b,0), py = (—a,0), ps = (a,0) respectively.

Assuming the masses as:

My =My = M3 =1m

and my = mys = M,

(3.9)



Restricted Symmetric Collinear Central Configuration for Siz body 23

and the distances between the masses due to the symmetry of the geometry (see

Figure 3.1) satisfy the following relations:

P2 = —P3;, P4 = —Ps5- (3-10)
m->=m ITI4— mi{=m lTIr,— ma=m
O o O
60 (2,0 (00 (30)  (b,0)
P2=-P3 Pa
< >
PP Ps

FIGURE 3.1: Symmetric collinear central configuration for five body

The center of mass for five-bodies can be written as,

o= mip, + MaPy + M3P3 + M4Py + MsPs (3 11)
my + my + mg + my + M ’ '

after using the values of p;, Py, P3, Py, Ps and My = Mo = M3 = M
and my = mys = M, the equation (3.11) becomes:
c = (0,0). (3.12)

Now using the values of Equations (3.9), (3.11) and (3.12) in Equations (3.4)-(3.8)
and using w? = 1(without loss of generality), then the equation (3.4) is identically

satisfied and remaining four Equations (3.5)-(3.8) become:
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M 5m M

—b = 0, 3.13

(a + b)? + 4b? + (a — b)? (3.13)

M ome M (3.14)

(a — b)? 4b? (a + b)? - '

m m m M

@t " a—b2 a2 a2 =0 (3.15)
m m m M

+ —— — — — —+4a=0, (3.16)

(a —b)?2 (a + b)? a? 4a?

Equation (3.13) and (3.15) are similar to Equation (3.14) and (3.16) respectively.

Therefore we have the following two equations:

M 5m n M n
(a — b)? 4b? (a + b)?

b = 0, (3.17)

m N m N m N M 0 (3.18)
_ — —a =0. .
(a + b)2 (a — b)? a? 4a?

Solving the above equations for m and M, we get

_ hl(a, b)
where
b a a
hi(a,b) = —(4a2 t e et b)2>’ (3.20)

ha(a,b) = _16a52b2 a ((a —1 SR (aib)z) ($+ (a —1 by? (aiby)’

(3.21)
and
_ h3(a’ b)
_ ha b), (3.22)
where
hs(a,b) = b+4a”+4a ((a b2 et b)2) (a2+ (@a—b)?  (a+ 5)2),

(3.23)
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ha(a,b) = — 165%2 - ((a - b2 " (a i b)2) (ai " - 7 (o +1 ’(’3,.2221;

Our next objective is to verify the positivity of small mass m and the large M,
which were described in equation (3.19) and (3.22) i.e., to find the value of a
and the value of b for which the m and M masses are positive. Equations
(3.19) and (3.22) are non-linear algebraic equations. It is very difficult to solve
these equations for m and M. Taking b = 0.5 and solving (3.19) and (3.22)

for a, we get the following two cases for a, where m and M are positive.i.e.,

1. 0.20 < a < 0.250

2. a > 0.87



Chapter 4

6th

Dynamics of Particle

4.1 Introduction

The dynamics of 6" particle mg moving in the plane according to the gravita-
tional field formed by the attraction of 5 masses (mj, my, ms, My, My) moving
always in a straight line is discussed. The motion of mg will not effect the gravita-
tional field of mq, mo, m3, my4 and ms because mg << My, Mo, M3, My, Ms.
This problem is called restricted collinear six-body problem (RC6BP). Equilibrium
points, their stabilities and regions of permissible motions of mg according to the
Jacobian constant is also investigated. Equation of motion that describe the planer
motion of restricted 6" particle, mass mg written from equation (3.1) reads in in-

ertial frame of reference, as:

" Ps — Pe P4 — Ps Ps — Pse
Pg= Msr— - +My—— -+ Mg ———
|P5 _P6| P4 — Pl |P3 — Pl
P> — P P1—D
tmp P2 TRe L, PITRe
|P2 — Pel |P1 — Pel

4.2 Equation of Motion of mg

Now our next goal is to write the above equation in rotating frame. Consider a

coordinate system that is rotating about the center of mass with uniform angular

26
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speed w. Let (€,m) be the coordinates of mg in this new rotating frame (non-

inertial frame). The position vector of mg in the rotating frame is

ps = &(t) e] +n(t) €3, (4.2)
where

e; — eiwt, e; — iezwt
Taking 1%t derivative and 2™¢ derivatives of equation (4.2) and choose w? = 1 we

get the following expression for velocity and acceleration for mg in rotating frame.

pg= (£ —m) e’ +i(¢+n)e" 43
pg=( —2n —¢&) e + i(n +26 —n) e

Using Equation (4.3) in Equation (4.1), the planer equations of motion of mg in

rotating frame in component form are

1 , b —b —
¢ —2n—£=—[m<§ TR >+M<“;a+£3a)},
Pg1 Pg2 Pg3 Pg4 Pgs (1)

n”+2£"—n=—[m(" + o+ ")+M(i+i>]. (4.5)

3 3 3 3 3
Pg1  Pe2  Pes Pgsa  Pes

The mutual distances are described as,

Por = VE 172, |
Pe2 = V(£ + b2+ 72
Pes = V(£ — b2 + 72, (4.6)
Pes = V(€ + a)? + 72
Pes = V(€ — a)* + n?.]

Multiplying Equation (4.4) by &', and Equation (4.5) by n’, we get
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173 ’ 7 ’ ’ b _b
56—2n€—€€=—m£(§ TR )
61 Pé2 Pg3
—M§,(£+a+€_a),
P34 Pgs

(4.7)

n 7 7 7 ’ 4 77 17 T’
nn+2£n—nn=—m’7(3+3+3>
P61 Pgs2 Pes
—Mﬁ(—+—ﬁ (45)

P3s  Pis

Adding Equations (4.7) and (4.8), we get we get:

¢ +n'n — (& +mm)=- €£+'m7)

¢ +be +mm

¢¢ +at +mm

(¢ —al +mm (4.9)

o

o (€€ )
(ss—bs + )
(g€ )
= )

w\ gé’w\ gé’w\gm\gm\g

Note that

£//£/+ v 1d <£r2+ r2> . 1d,02 (4 10)
T = S )T 2ar '
where v is the speed of the infinitesimal mass relative to the rotating frame. Sim-

ilarly

¢ +mm = 55(€2+n ). (4.11)

From Equation (4.6), we obtaion, the following

ps, =& + 71, (4.12)
d 1 , /
—Pe1 = —(§§ + mm). (4.13)
dt Pe1
As we know that

d/ 1 1 d

() = e (119
dt \ pg; p61 dt
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Using Equation (4.13) in Equation (4.14) we get the following equations:

1 1 , ’
—=——(&& + mm), (4.15)
Pg1 P&1
similarly
1 1 /7 ’ ’
—— =——(&§ +b§ +mm), (4.16)
Pg2 Pé2
]_ 1 ’ ’ /7
—— =——(&§ —b§ +1m), (4.17)
Pé3 Pg3
1 1 ’ ’ ’
—— =—— (& +a& +mm), (4.18)
Pé4 Pg4
1 1 ’ /7 /7
—=——=(&& —af +nm). (4.19)
Pgs Pgs

Using equations from (4.10) to (4.19) in equation (4.9), we get

d/1, 1 ., 1 1
a(i’“ ~ 5t *“‘m(p—m)‘m(p—m)
1 1 1
) ) (L) -+
Pe3 Pe4 Pss

Integrating equation (4.20) with respect to t, we get:

(4.20)

1, 1 ., 9 1 1 1 1 1
—v* = —(&4+n)-m(—+—+ — | —M|—+— ) =C. (421)
2 2 Pé1 Pe2 Pes Pe4 Pes

The constant C (named after the German mathematician Carl Jacobi who discov-
ered it in 1836) is known as the Jacobi constant. In the collinear restricted six

body problem, C is a constant of motion of mg, here

o —+ L 1 _ 1 _ 1 grethegravitational P.E of the masses
Pe1 Pe2 Pg3 Pea Pes

mq, Mgy, M3, My, My along horizontal axis.

° %'02 is the K.E per unit mass relative to rotating frame.

. —%(52 + n?) is the P.E of the centrifugal force obtained by the rotation of

the reference frame.
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We rewrite the equation (4.21),

9 9 9 1 1 1 1 1
v :(S +77)+2M — 4+ — ) 4+2m|—+ —+ — | +2C (4.22)
Pé4 Pes Pe1 Pe2 Pes

as v? cannot be negative, we can write true,

1 1 1 1 1
(§2+n2)+2M(—+—) +2m< + + ) +2C >0, (4.23)
Pé4 Pes Pé1 Pe2 Pes
where
2 4 n? 1 1 1 1 1
U(gm):u+]\/[<_+_)+m( + + ) (4.24)
2 Pea Pes Pe1 Pe2 Pes

4.3 Equilibrium Solutions

The equations (4.4) and (4.5) do not have an analytical solution of a closed form,
we can use these equations to determine the location of the equilibrium points.
Equilibrium points are the places in space where the infinitesimal mass mg would
have zero velocity and acceleration, i.e., where mg appears at rest permanently
relative to the masses my, mq, ms, My, My respectively. These solutions can be

found only if we meet the sufficient condition of all rates equal to zero,

To find the zeros (€, n) or equilibrium points / Lagrange point, we need to solve
these equations numerically or drawing contour plot using Mathematica. The
classification of equilibrium points for restricted collinear six body problem is dis-

cussed in the following cases:

4.4 Case 1: When a € [0.20, 0.250], b = 0.5

There are two equilibrium points if we select a = 0.20 as a marginal case, for

a € [0.20 , 0.250]. If we choose any other value of a from the interval other
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than 0.20 than there exits eight eqiulibrium points.

The blue contour line represents the contour of Ugs = 0 and orange contour line
represents the contour of U, = 0, respectively. The black dots show the position
of mass and the red dots show the position of equilibrium points . (See Figures

4.6 to 4.9 below)

Equilibrium points, when a = 0.20, b = 0.5.

we take @ = 0.20 any point in the interval [0.20 , 0.250], the corresponding
values are b = 0.5, m = 0.005 and M = 0.03219.

Figure 4.1 shows that there are two equilibrium points E1, E5. They are collinear

along y — axis. n

04F~ — — T T T T T T T T L g
1E1

0.2

m1

0.0

e

-0.4 -0.2 0.0 0.2 0.4

-0.4-.

FIGURE 4.1: For 0.20 < a < 0.250, contour plot of Ug = 0 (blue) and

U, = 0 (orange), when a = 0.20, b = 0.5, m = 0.00 and M = 0.0363136.

Red dots represent the position of massess (m;,i = 1,2,3,4,5) and black
dots represent position of equilibrium points (E;, 7 = 1, 2).
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Equilibrium points, when a = 0.220, b = 0.5

We take a = 0.220 to be any point in the interval, the corresponding value are
b=0.5,m=0.005 and M = 0.03219.

Figure 4.2 shows that there are eight equilibrium points. Two equilibrium points
FE; and E5 are collinear along y — axts and other six equilibrium points Ey4, Es,

Eg, E;, and Eg are collinear along * — axs.

0.2 .

E3] m2JE4| m4l E5 m1{E6 im5 | E7Am3 |E8 — U
0.0 $
Uy,

-0.5 0.0 0.5

FIGURE 4.2: For 0.20 < a < 0.250, contour plot of Ug (blue) and Uy,

(orange), when a = 0.220, b = 0.5, m = 0.005 and M = 0.03219. Red

dots represent the position of equilibrium points(E;,72 = 1,2,3,4,5,6,7,8),
and black dots represent position of masses (m;,i = 1,2, 3,4, 5)

Equilibrium points, when a = 0.233, b = 0.5
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We take @ = 0.233 to be any point in the interval [0.20 , 0.250], the corre-
sponding values are b = 0.5 , m = 0.018333 and M = 0.0256997.

Figure 4.3 shows that there are eight equilibrium points. Two equilibrium points
E, and E5 are collinear along y — axts and other six equilibrium points FE4, Ej,

Eg, E;, and Eg are collinear along * — axts.

n
E1

0.4+ ’ §

0.2+ §
E3] m2) E4 m4| E5 m1|E6 {m5 |E7 ES8 — U;
00" o ¢ v
n

-0.2 §

-04- [EZ .

I | | |

-0.5 0.0 0.5

FIGURE 4.3: For 0.20 < a < 0.250, contour plot of Ug (blue) and U, (or-
ange), when a = 0.233, b = 0.5, m = 0.018333 and M = 0.0256997. Red
dots represent the position of equilibrium points(E;,7 = 1,2,3,4,5,6,7,8),
and black dots represent position of masses (m;,i = 1,2, 3,4, 5).
Equilibrium points, when a = 0.244, b = 0.5
We take @ = 0.244 to be any point in the interval [0.20 , 0.250], the corre-
sponding values are b = 0.5, m = 0.057222 and M = 0.0125336.

Figure 4.4 shows that there are eight equilibrium points. Two equilibrium points
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E, and E, are collinear along y — axts and other six equilibrium points FE4, Ej,

Eg¢, E7, and Eg are collinear along * — axts.
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FIGURE 4.4: For 0.20 < a < 0.250, contour plot of Ug (blue) and U, (or-

ange), when a = 0.244, b = 0.5, m = 0.057222 and M = 0.0125336. Red

dots represent the position of equilibrium points(E;,¢ = 1,2,3,4,5,6,7,8),
and black dots represent position of masses (m;,i = 1,2, 3,4, 5).

4.5 Case 2: When a € [0.87 , 2.0], b = 0.5

There are four equilibrium points if we select @ = 0.87 as a marginal case, for
a € [0.87, 2.0]. If we choose any other value of a from the interval [0.87 , 2.0]
other than a = 0.87 than there exits eight equilibrium points.

Equilibrium points, when a = 0.87, b = 0.5
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We take a = 0.87 to be any point in the interval [0.87 , 2.0], the corresponding
values are b = 0.5, m = 0.1 and M = 0.00.

Figure 4.5 shows that there are eight equilibrium points. Two equilibrium points
E, and E5 are collinear along y — axts, two equilibrium points E3 and E,4 are

collinear along * — axs.
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FIGURE 4.5: For 0.87 < a < 2.0, contour plot of Ug (blue) and U, (orange),
when a = 0.87, b = 0.5, m = 0.1 and M = 0.0142598. Red dots represent
the position of equilibrium points(FE;,¢ = 1,2,3,4), and black dots represent
position of masses (m;,¢ = 1,2,3,4,5).
Equilibrium points, when a = 1.08, b = 0.5
We take @ = 1.08 to be any point in the interval, the corresponding values are

b= 0.5, m = 0.248762 and M = 0.2989718.

Figure 4.6 shows that there are eight equilibrium points. Two equilibrium points
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FE; and E5 are collinear along y — axts and other six equilibrium points E,4, Es,

Eg, E;, and Eg are collinear along * — axts.
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FIGURE 4.6: For 0.87 < a < 2.0, contour plot of Ug (blue) and Uy, (orange),

when @ = 1.08,b = 0.5, m = 0.248762 and M = 0.2989718. Red dots

represent the position of equilibrium points(E;,¢ = 1,2,3,4,5,6,7,8), and
black dots represent position of masses (m;,1 = 1,2,3,4,5).

Equilibrium points, when a = 1.32, b = 0.5

We take a = 1.32 to be any point in the interval, the corresponding values are
b=0.5 m=0.473939 and M = 1.61644.

Figure 4.7 shows that there are eight equilibrium points. Two equilibrium points
FE; and E5 are collinear along y — axts and other six equilibrium points Ey4, Es,

Eg, E;, and Eg are collinear along * — axs.
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00_ E3 m4+ E5+ m2 | E7 m1| E8| m3 +E6 +m5 E4_£ — ug

FIGURE 4.7: For 0.87 < a < 2.0, contour plot of Ug (blue) and Uy, (orange),

when b = 0.5 a = 1.32, m = 0.473939 and M = 1.61644. Red dots

represent the position of equilibrium points(E;,¢ = 1,2,3,4,5,6,7,8), and
black dots represent position of masses (m;,¢ = 1,2,3,4,5).

Equilibrium points, when a = 1.98, b = 0.5 We take a = 1.98 to be
any point in the interval, the corresponding values are b = 0.5 , m = 1.07242
and M = 16.78364.

Figure 4.8 shows that there are eight equilibrium points. Two equilibrium points
E, and E5 are collinear along y — axts and other six equilibrium points E4, Ej,

Eg, E;, and FEg are collinear along * — axts.
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FIGURE 4.8: For 0.87 < a < 2.0, contour plot of Ug (blue) and Uy, (orange),

when a = 1.98, b = 0.5, m = 1.07242 and M = 16.78364. Red dots

represent the position of equilibrium points(E;,¢ = 1,2,3,4,5,6,7,8), and
black dots represent position of masses (m;,¢ = 1,2,3,4,5).

4.6 Stability Analysis of Equilibrium Points

This section is dedicated to the mathematical analysis of the stability of equilib-
rium points or lagrange points in R6BP. To check whether the equilibrium points
or lagrangian points are stable or unstable, we perform an individual eigenvalue

analysis for each equilibrium point.

Eigenvalues for Case-1:
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Choose a = 0.20 from [0.20 , 0.250] and the corresponding values are b = 0.5,
M = 0.0363136, m = 0.00 and E4(0.0,0.362) (see figure 4.1), we will follow

the procedure given in chapter 2 to analysis of stability. The Jacobian matrix is

0.748956  0.00
0.004  2.24685

The eigenvalues of matrix A are: (2.24685,0.748956), likewise, we have found
eigenvalues for equilibrium points generated when

a = 0.20,0.220,0.233,0.244,0.87,1.08,1.32,1.98. We have shown coordi-
nates of equilibrium points and their corresponding eigen values along with the

stability status in Table 4.1 to 4.5 for different values of a.

TABLE 4.1: Analysis of stability when a = 0.20, b = 0.500,
M = 0.0363136, m = 0.00.

Sr.No Equilibrium points Eigenvalues Stability
1 E,(0.0, 0.362) (2.24685, 0.748956)  unstable
2 E»(0.0, -0.362) (2.24685, 0.748956)  unstable

The same approach also applies to each equilibrium point , the eigenvalues are

given below:
TABLE 4.2: Analysis of stability when m = 0.0054629, M = 0.0321903,
a = 0.220, b = 0.500.

Sr.No Equilibrium points Eigenvalues Stability
1 E,(0.0, 0.362) (2.23531, 0.767071)  unstable
2 E»(0.0, -0.362) (2.23531, 0.7670716)  unstable
3 E5(-0.621, 0.000459)  (8.32723, -2.66361)  unstable
4 E,(0.621, 0.000459)  (8.32723, -2.66361)  unstable
5 E5(-0.408, 0.004131)  (25.0674, -11.0143)  unstable
6 E4(0.408, 0.004131)  (25.0674, -11.0143)  unstable
7 E.(-0.071, 0.000459)  (53.7948, -25.3966)  unstable
8 E5(0.071, 0.000459)  (53.7948, -25.3966)  unstable
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TABLE 4.3: Analysis of stability when m = 0.0183336, M = 0.0256997,
a=0.233,b=0.5.

Sr.No Equilibrium points Eigenvalues Stability
E,(0.002596, 0.3884)  (2.31164, 0.69892)  unstable
L5(0.002596, -0.3884)  (2.31164, 0.69892)  unstable

1

2

3 E5(-0.695, 0.001363) unstable
4 E4(0.695, 0.001363)
D

6

7

E5(-0.370, 0.004089)
(

6.66097, -1.83047)

6.66097, -1.83047)  unstable
38.5901, -17.7694)  unstable
E(0.370, 0.004089) ) unstable
E~(-0.105, 0.001363)  (59.2515, -28.1199)

8 E5(0.105, 0.001363) 59.2515, -28.1199)  unstable

TABLE 4.4: Analysis of stability when m = 0.057222, M = 0.0125336,
a=0.244, b = 0.5,.

38.5901, -17.7694

unstable

(
(
(
(
(
(

Sr.No Equilibrium points Eigenvalues Stability
1 E,(0.003083, 0.4837)  (2.38364, 0.619541) unstable
2 E,(0.003083, -0.4837) (2.38364, 0.619541) unstable
3 E5(-0.80, 0.001785)  (5.68192, -1.34095)  unstable
4 E,4(0.80, 0.001785) (5.68192, -1.34095)  unstable
5 E5(-0.330, 0.001785)  (67.1707, -32.0746)  unstable
6 Eg(-0.330, 0.001785)  (67.1707, -32.0746)  unstable
7 E,(-0.1549, 0.001785)  (70.765, -33.8701)  unstable
8 E5(0.1549, 0.001785)  (70.765, -33.8701)  unstable
TABLE 4.5: Analysis of stability when m = 0.150352, M = 0.0142598,
a = 0.249, b = 0.5.
Sr.No Equilibrium points Eigenvalues Stability
1 E,(0.00357, 0.65) (2.44069, 0.567472)  unstable
2 E»(0.00357, -0.65) (2.44069, 0.567472)  unstable
3 E5(-0.945, 0.002336)  (4.76689, -0.883443)  unstable
4 E,4(0.945, 0.002336)  (4.76689, -0.883443)  unstable
5 E5(-0.325, 0.001785)  (4.16668, -2.00231)  unstable
6 E4(0.325, 0.001785)  (4.16668, -2.00231)  unstable
7 E,(-0.175, 0.001785)  (-5.11082, 4.68278)  unstable
8 Eg(0.175, 0.001785)  (-5.11082, 4.68278)  unstable
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Eigenvalues for Case-2 :

To check whether the equilibrium points or lagrangian points are stable or unsta-
ble, we perform an individual eigenvalue analysis for each equilibrium point. We
have also conducted astability analysis for the Case-2 in which the interval for a is
(0.87 , 2.0). The coordinates of equilibrium points and corresponding eigen values

along with the stability status are given in Table 4.6 — 4.9 for different values of a.

TABLE 4.6: Analysis of stability when m = 0.1, M = 0.014,
a =0.87, b =0.5.

Sr.No Equilibrium points Eigenvalues Stability

1 E,(0.00557, 0.568) (2.40987, 0.597351)  unstable
2 E5(0.00557, -0.568)  (2.40987, 0.597351)  unstable
3 E5(-0.8745, 0.006328)  (5.18135, -1.08024)  unstable
4 E,4(0.8745, 0.006328)  (5.18135, -1.08024)  unstable

There are four equilibrium points (see Table 4.6) and all theses equilibrium points
are unstable. The points are F1(0.00557, 0.568), E2(0.00557, -0.568), F3(-0.8745,
0.006328), F4(0.8745, 0.006328).

TABLE 4.7: Analysis of stability when m = 0.248762, M = 0.298971,
a =1.08,b=0.5.

Sr.No Equilibrium points Eigenvalues Stability
1 E4(0.004003, 0.9031)  (2.30876, 0.692497)  unstable
E»(0.004003, -0.9031) (2.30876, 0.692497)  unstable
E5(-1.59, 0.00176) 6.34397, -1.67198)  unstable
E4(1.59, 0.00176) 6.34397, -1.67198)
E5(-0.776, 0.00528) (45.5469, -21.263)  unstable
E4(0.776, 0.00528) (45.5469, -21.263)  unstable
E,(-0.2457, 0.00528)  (67.1595, -32.0584)  unstable
E5(0.2457, 0.00528)  (67.1595, -32.0584)  unstable

unstable

co I O Ot k= W N
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TABLE 4.8: Analysis of stability when m = 0.4739392, M = 1.61644,
a=1.32b=0.5.

Sr.No Equilibrium points Eigenvalues Stability

1 E,(0.00, 1.339) (2.17117, 0.832416)  unstable
2 E»(0.00,-1.339)  (2.17117, 0.832416)  unstable
3 E5(-2.26, 0.00) (5.37522, -1.18761)  unstable
4 E4(2.26, 0.00) (5.37522, -1.18761)  unstable
> E5(-0.776, 0.00528)  (68.0048, -32.4941)  unstable
6 Eg(0.776, 0.00528) (68.0048, -32.4941)  unstable
7 E(-0.2457, 0.00528)  (128.039, -62.4788)  unstable
8 E5(0.2457, 0.00528)  (128.039, -62.4788)  unstable

TABLE 4.9: Analysis of stability when m = 1.07242, M = 16.7836,
a = 1.988, b= 0.5.

Sr.No Equilibrium points Eigenvalues Stability
1 E,(0.0252, 2.765) (2.11599, 0.881011)  unstable
E5(0.0252, -2.765) (2.11599, 0.881011)

2 unstable
3 E5(-4.159, 0.01562)  (4.52328, -0.761639)

4 E,4(4.159, 0.01562)  (4.52328, -0.761639)  unstable
5 E5(-0.8409, 0.01563)  (83.0441, -39.9794

6

7

8

unstable

) unstable

E6(0.8409, 0.01563)  (83.0441, -39.9794)  unstable
E+(-0.25, 0.01563) (286.796, -141.099)  unstable
E5(0.25, 0.01563) (286.796, -141.099)  unstable

4.7 Permitted Regions of Motion

One of the most important constants of dynamical system is the Jacobian con-
stant ‘C’ of motion, which represent the motion of the infinitesimal body. It
can be used to sketch the regions of permitted motion. The boundaries be-
tween the prohibited and permitted regions are called zero velocity curves. In
our geometry, we must now investigate these possibilities i.e., on the x-axis, five

masses are placed: my, mq, m3, My, and msg, with the infinitesimal mass mg
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moving in the gravitational field of m; — mys. In Mathematica, we draw re-
gions for different values of the Jacobian constant for Equation (4.24), and we

obtain two regions, which are following;:

1. Permissible region of motion (white area), where mg can freely move.

2. Shaded area (blue), where the motion of mg is not allowed.
One can see easily that the Figures 4.9-4.34 by increasing the value of the Jaco-
bian constant C from C=0.25 to C=0.36, the white region of motion of mg is re-

ducing and for C=26.0 the masses my, mq, m3, My, ms are completely trapped,

so for this, the value of C the mg can not reach around my, mq, ms, My, ms.

4.7.1 Permitted Regions When a = 0.20 and b = 0.5

Figures 4.10 to 4.34 show the regions, where mg can move when a = 0.20 and
b = 0.5. It is clearly visible that by increasing the value of ‘C’ the permitted

regions reduces.
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FIGURE 4.9: Permitted regions of motion for C=0.25.
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FIGURE 4.10: Permitted regions of motion for C=0.30.
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FIGURE 4.11: Permitted regions of motion for C=0.31.
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FIGURE 4.12: Permissible regions of motion for C=0.36.

4.7.2 Permitted Regions When a = 0.220 and b
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FIGURE 4.13: Permitted regions of motion for C=0.25.
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FIGURE 4.14: Permitted regions of motion for C=0.26.
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FIGURE 4.16: Permitted regions of motion for C=0.36.

4.7.3 Permitted Regions When a = 0.233 and b = 0.5
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FIGURE 4.17: Permitted regions of motion for C=0.4543.
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FIGURE 4.18: Permitted regions of motion for C=0.463.
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4.7.4 Permitted Regions When a = 0.244 and b = 0.5
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FIGURE 4.20: Permitted regions of motion when C=0.77.
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FIGURE 4.22: Permitted regions of motion for C=0.80.

4.7.5 Permitted Regions When a
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FIGURE 4.23: Permitted regions of motion for C=0.86.
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4.7.6 Permitted Regions When a = 1.08 and b = 0.5
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FIGURE 4.27: Permitted regions of motion for C=2.85.
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FIGURE 4.28: Permitted regions of motion for C=3.1.

4.7.7 Permitted Regions When a = 1.32 and b = 0.5
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FIGURE 4.29: Permitted regions of motion when C=5.3.
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FIGURE 4.30: Permitted regions of motion for C=6.0.
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FIGURE 4.31: Permitted regions of motion for C=7.0.
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4.7.8 Permitted Regions When a = 1.98 and b = 0.5
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FIGURE 4.33: Permitted regions of motion for C=24.9.
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Chapter 5

Conclusions

In this study we have investigated the motion of an infinitesimal mass under the
gravitational influence of five large masses (primaries) is investigated. The pri-
maries maintain collinear central configuration through out their motion. The
pair of bigger masses are placed in the middles and the pair of smaller masses are
placed at each corner and one smaller mass is at center of mass (0,0). We have
characterized the collinear central configuration and discovered that it holds for a
fixed value of b = 0.5, and for intervals 0.20 < a < 0.250, 0.87 < a < 2.0.
We sub-divided each intervals for a into four intervals where there is a clear change
in position and number of equilibrium points. There are 2,4, and 8 equilibrium
points on the entire interval of @ in various cases are observed. Using Mathemat-
ica stability analysis by applying the eigen value test for stability of equilibrium
points is performed. According to this investigation, all the equilibrium points are
unstable.By changing the value of Jacobian constant C', the permissible region

reduces and the prohibited region of motion of mg is also discussed.
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